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SUMMARY

These investigations are focussed on the tooth root strength of rear axle gears for trucks.
Four different standards for calculating the tooth root stress of bevel gears have been
compared and analysed. Although the expressions that are used in these standards appear
to be quite different, they have been rewritten in such a way that the individual load, geometry
and material factors can be directly compared. This shows that in fact these standards are all
built up in a comparable way.

A calculation example has been performed on two hypothetical gear sets, representative for
truck applications. The largest differences are attained on the Allowable Stress, the Tooth
Form Factor and the Face Load Distribution Factor. Smaller differences may be observed on
the Load Sharing, the Helical and the Size Factor. The calculated stresses and the allowable
material stresses are to be closely linked to each other within one and the same calculation
standard. The Face Load Distribution Factor was calculated to be 1.30 instead of the
normally recommended value of 1.50 according to DIN, by considering a reviewed stress
distribution over the gear facewidth.

Three normally applied methods for calulating tooth root stress of hypoid gears have been
compared. The differences between these methods are mainly determined by the geometry
of the virtual bevel gears. The influence of hypoid offset on tooth root stress, calculated
according to these three methods showed very large differences. The tendencies of these
calculations have been compared with results of other investigations. This has shown that the
influence of hypoid, calculated according to Winter, showed the best correlation with results
of external investigations.

Several endurance driveline tests have been performed on four different types of rear axle
hypoid gears, assembled in a driving head. The tests were run at a constant amplitude load
and speed, until fatigue breakage of the pinion teeth occurred.

The testresults were statistically evaluated and have been described by a lognormal and a
two parameter Weibull failure distribution. A damage analysis on several of the failed pinions
showed consistent failure types that partly correspond to assumptions in stress calculations.
The DIN 3991 method was used for calculating the tooth root stress, by using the Winter
method for determining the geometry of the virtual bevel gears. These were then fitted with
the test results, by which a synthetic SN curve was established.

The established fatigue limit is in line with standard values. The slope of the SN curve and
the ratio of static to endurance strength were however different from the values, used for
helical gears of the same material. This is believed to be caused by the non linearity of the
stress-torque relationship, being a consequence of the growth of the contact pattern with
increasing torque. In all standards however, the stress is calculated as being linear with
torque. Therefore, a Load Factor is introduced to account for the influence of the contact
pattern. This assures a non linear relation between torque and tooth root stress for bevel and
hypoid gears. When this factor is applied, comparable slope values for the SN curve of helical
gears in identical materials may be used. With this mathematical adaptation, the difference
between calculated and registered endurance lifes for three of four axle types became far
less than plus-minus 10% for a failure probability of 10%.

Vehicle Driveline Loading Spectra have been measured and calculated. A comparison shows
good agreement. On this basis, several loading spectra have been simulated for typical
vehicle routes. Two basic types of loading spectra have been determined here, for which
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analytical expressions have been developed as well as equations for the equivalent torque.

A limited number of endurance tests at variable amplitude loading have been performed on
one axle type. It was found that the fatigue damage accumulation theory according to Corten-
Dolan was the best suitable for variable amplitude loading when the non linear stress-torque
relation was used, although still a reduction in endurance strength may be noticed. At variable
amplitude loading mostly a mix of failures may be expected, where the early occurence of
surface damage may influence the endurance limit for tooth root fatigue.

A simple relation has been derived for the gear outer diameter of bevel and hypoid gears,
based on the maximum output torque. For preliminary dimensioning, this torque can be
considered to be mainly based on the vehicle weight. With this expression, it is possible to
give a practical first order estimate on the gear outer diameter for a given vehicle weight.

ZUSAMMENFASSUNG

Diese Untersuchungen beziehen sich auf die Zahnfulfestigkeit von Verzahnungen far LKW
Hinterachsen. Vier Berechnungsmethoden fir ZahnfuBspannung an Kegelradern sind
verglichen und analysiert worden. Obwonhl die Ausdrickungen dieser Berechnungen sehr
verschieden aussehen, sind sie in einer Weise geschrieben worden, daR die individuelle
Faktoren fir Last, Geometrie und Werkstoff direkt mit einander verglichen werden kénnen.
Einige Berechnungen sind ausgefuhrt worden an zwei hypothetischen Getriebeséatzen, die
representativ sind fur LKW Anwendungen. Die grofiten Unterschiede treten auf bei den
Faktoren fir Zahnform und Breitenlastverteilung. Kleinere Unterschiede treten auf bei den
Faktoren fur Spannungskonzentration, Lastaufteilung, Zahnschragung und Gréf3eneinfluf3.
Die berechneten und die zuldssigen Spannungen einer Berechnungsmethode soliten aber
immer zueinander gehoren. Der Breitenlastverteilungsfaktor nach DIN ist berechnet worden
auf einem Wert von 1.30 anstatt den normalerweise gebrauchlichen Wert von 1.50, durch die
Annahme eine gednderte Spannungsverteilung Gber die Zahnbreite.

Drei normal angewendete Methoden zur berechnung der ZahnfuRspannung von Hypoidrader
sind verglichen. Die Unterschiede zwischen diese Methoden werden hauptsachlich bestimmt
von der Geometrie der virtuelle Kegelrader. Der Einflu@ von Hypoid Achsversatz auf die
ZahnfuRspannung, berechnet nach diese drei Methoden ergab grofle Unterschiede. Die
Tendenzen dieser Berechnungen sind verglichen mit Ergebnisse anderer Untersuchungen.
Hieraus hat sich erstellt daR der EinfluR von Hypoid Achsversatz, errechnet nach Winter, die
beste Ubereinstimmung hat mit die Erbegnisse von andere Untersuchungen.

Es sind verschiedene Lebensdauererprobungen ausgeftihrt worden an Hypoid Verzahnungen
die in Hinterachsgehausen eingebaut sind. Die Erprobung hat unter einer Last mit konstanter
- Amplitude und Drehzahl stattgefunden, bis zum Ermidungsbruch der Ritzelzéhne.

Die Ergebnisse der Lebensdauererprobungen sind statistisch evaluiert worden; sie konnten
beschrieben worden von einer Lognormaler und einer zwei parameter Weibull Verteilung.
Eine Schadensanalyse an einigen Ritzel hat ein konsistentes Versagen nachgewiesen, das
jedoch nur zum Teil tibereinstimmt mit Annahmen der Spannungsberechnung. Die DIN 3991
ist benutzt worden zur Berechnung der ZahnfuRspannung, wobei die Berechnung der
Geometrie fur die virtuelle Kegelrader auf Winter basiert. Zusammen mit den realisierten
Lebensdauern wurde dann eine synthetische Wohlerlinie zusammengestelit.

Die Ermiudungsfestigkeit stimmte tiberein mit normalen Werten. Die Steigung der Wéhlerlinie
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und das Verhaltnis von statischer Festigkeit zur Ermidungsfestigkeit zeigten aber andere
Werte als die fiir Schragstirnrader aus dem gleichen Werkstoff. Es wird angenommen, dass
dieses verursacht wird durch das nicht lineare Verhaltnis zwischen Drehmoment und
ZahnfuBspannung, welche eine Konsequenz der Tragbildausbreitung bei zunehmendem
Drehmoment ist. In allen Berechnungsmethoden wird jedoch mit einem linearen Verhaltnis
gerechnet. Deshalb ist ein Lastfaktor fiir den EinfluB des Tragbildes eingeflhrt worden.
Dieser sichert ein nichtlineares Verhalten zwischen Drehmoment und ZahnfuBspannung far
Kegel- und Hypoidréder. Mit diesem Faktor kdnnen die Steigungswerte der Wohlerlinie fur
Schragzahnréader auch fiir Hypoidrader benutzt werden, unter Voraussetzung von gleichem
Werkstoff. Der Unterschied zwischen berechneter und gemessener Ermidungsfestigkeit war
fiir drei der vier Achstypen deutlich weniger als plus/minus 10% fiir eine
Ausfallwahrscheinlichkeit von 10%.

Antriebslastkollektive sind ermittelt und berechnet worden. Ein Vergleich zeigte gute
Ubereinstimmung zwischen beiden. Dabei sind verschiedene Lastkollektive flr einige
typische Einsatzfélle simuliert worden. Zwei Haupttypen von Lastkollektiven sind zu
erkennen, fir die analytische Ausdriicke entwickelt worden sind sowie Gleichungen fur das
aquivalente Drehmoment.

Eine beschrinkte Anzahl Lebensdauer Erprobungen mit variabler Lastamplitude sind
ausgefiihrt worden. Es hat sich gezeigt, dass die Schadensakkumulationshypothese nach
Corten-Dolan die Ergebnisse am Besten beschreibt. Dennoch ist zu erwarten, daf3 unter
einer Last mit variabler Amplitude eine Reduzierung der Ermudungsfestigkeit auftritt, wobei
frihzeitige Oberflachenschéden die Ermidung fir Zahnbruch reduzieren.

Ein einfacher Ausdruck ist abgeleitet worden zwischen Tellerrad Aussendurchmesser und
maximalem Ausgangsdrehmoment, womit eine gute Ersteinschatzung gemacht werden kann
vom Tellerrad Aussendurchmesser wenn nur das Fahrzeuggewicht bekannt ist.

SAMENVATTING

De uitgevoerde onderzoekingen hebben betrekking op de tandvoetsterkte van vertandingen
voor achterassen van trucks. Vier verschillende normen voor het berekenen van
tandvoetspanning aan kegel- en hypoidwielen zijn vergeleken en geanalyseerd. Ondanks dat
de uitdrukkingen van deze normen de indruk geven onderling geheel verschillend te zijn, zijn
deze herschreven op een dusdanige wijze dat de individuele belastings-, geometrie- en
materiaalfactoren direct vergeleken kunnen worden. Dit toont aan dat deze berekeningen
alle op een en dezelfde wijze zijn opgebouwd.

Een rekenvoorbeeld is uitgevoerd aan twee hypothetische tandwielsets, welke representatief
zijn voor truck toepassingen. De grootste verschillen treden op bij de tandvormfactor en de
factor voor de belastingverdeling. Kleinere verschillen treden op bij de factoren voor de
belastingopdeling, de tandschuinte en de grootte. Berekende- en toelaatbare spanningen
dienen nauw met elkaar verbonden te zijn binnen een en dezelfde berekeningsmethode.

Er is afgeleid dat de factor voor de belastingverdeling 1.30 dient te bedragen in plaats van de
gangbaar aanbevolen waarde van 1.50 volgens DIN, door een andere belastingverdeling
over de tandbreedte aan te nemen.

Voor het berekenen van de tandvoetspanning aan hypoidwielen zijn drie gangbare methoden
met elkaar vergeleken. De verschillen tussen deze methoden worden voor een groot deel
bepaald door de geometrie van de vervangende virtuele kegelwielsets. De invioed van de
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hypoid offset op de tandvoetspanning, berekend volgens deze drie methoden gaf onderling
zeer grote verschillen te zien. De tendensen van deze berekeningen zijn vergeleken met
resultaten van andere onderzoekingen. Hieruit is gebleken dat de invioed van de hypoid
offset, berekend volgens Winter, het beste overeenkomt met de resultaten van de externe
onderzoekingen.

Er ziin verscheidene levensduurbeproevingen uitgevoerd aan de hypoidwielen van vier
verschillende typen achterassen, welke compleet geassembleerd waren in een achteras. De
beproevingen vonden plaats bij een constante amplitude van koppel en toerental, totdat er
vermoeiingsbreuk van de rondselvertanding optrad.

De beproevingsresultaten zijn statistisch beoordeeld; ze zijn beschreven met een
lognormale- en een twee parameter Weibull verdeling. Een schadeanalyse aan enkele van
de gefaalde rondsels gaf een consistent schadebeeld te zien, welke ten dele overeenkomt
met de aannamen in de spanningsberekeningen. De DIN 3991 methode is gebruikt voor het
berekenen van de tandvoetspanning, waarbij de methode volgens Winter voor het bepalen
van de vertandingsgeometrie van de virtuele kegelwielen is gebruikt.

De uit de beproevingen afgeleide waarde voor de vermoeiingsgrens komt overeen met
normaal gehanteerde waarden. De helling van de SN-curve en de verhouding van de
statische- tot de vermoeiingssterkte bleken echter te verschillen van de waarden die gebruikt
worden voor cilindrische tandwielen uit hetzelfde materiaal. Dit verschil wordt veroorzaakt
door de niet lineariteit in de relatie tussen tandvoetspanning en aandrijfkoppel, welke op zijn
beurt een gevolg is van de draagbeeldgroei bij toenemend aandrijfkoppel. In alle
berekeningsnormen wordt de spanning echter gerekend als zijnde lineair met het
aandrijfkoppel. Om aan het effect van de draagbeeldgroei tegemoet te komen, wordt er een
belastingsfactor geintroduceerd voor de invioed van het draagbeeld. Hierdoor wordt er
rekenkundig een niet linear gedrag zeker gesteld tussen aandrijfkoppel en tandvoetspanning
bij kegel- en hypoidwielen. Indien deze factor wordt gebruikt, kunnen ook dezelfde waarden
gehanteerd worden voor de helling van de SN-curve bij cilindrische tandwielen. Het verschil
tussen berekende- en gerealiseerde levensduur voor drie van de vier astypen werd hierdoor
minder dan plus/minus 10% voor een uitvalwaarschijnlijkheid van 10%.

Er ziin enkele belastingsspectra aan de voertuigdriiflin gemeten en berekend. Een
vergelijking tusen beide geeft een goede overeenkomst aan. Op basis hiervan zijn er diverse
belastingsspectra gesimuleerd voor enkele specifieke voertuigroutes. Er kunnen hier twee
zogeheten basistypen van belastingsspectra worden onderkend, waarvoor analytische
uitdrukkingen zijn ontwikkeld, alswel vergelijkingen voor het bepalen van het equivalente
aandrijfkoppel.

Een beperkt aantal levensduurproeven bij variabele amplitude is uitgevoerd. Hierbij is
gebleken dat de theorie voor de schade-accumulatie volgens Corten-Dolan de kleinste
verschillen gaf tussen berekening en realisatie, alhoewel er nog steeds een reductie
benodigd is voor de waarde van de vermoeiingsgrens, welke bij constante amplitude is
bepaald. Bij variabele amplitude kunnen er in het algemeen verschillende schades
tegelijkertijd optreden, waarbij vroegtijdige oppervlakteschade de vermoeiingsgrens voor
tandvoetbreuk in negatieve zin beinvioedt.

Er is een eenvoudige uitdrukking afgeleid tussen de buitendiameter van het kroonwiel en het
maximale uitgaande koppel. Hiermee kan de afmeting van een kroonwiel worden bepaald
voor een allereerste dimensionering, indien enkel het voertuiggewicht bekend is.
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Introduction 1

1 INTRODUCTION

1.1 General Description

Since the beginning of automotive history, rear axles have been used in rear wheel driven
vehicles, both in passenger cars as well as in commercial vehicles.

Typical commercial vehicle applications range from international long distance transport (long
distance haulage) via inter regional transport to inter or inner-urban distribution. In general,
tractor-trailer combinations or truck-trailers are used for this type of transport of goods.

The total vehicle or combination weights nowadays are maximum 40 or 44 tonne; mostly this
is limited by general legislation rules of different countries. For inter-regional or national
transport, vehicles in the range of 25 to 35 tonne are used. In the medium range, such as
inter-urban transportation, vehicle weights mostly range from 7 to 20 tonne. These types of
vehicles may also include vehicles for transport of goods such as sand, stones, rock, wood,
concrete as well as off-the-road vehicles for militairy applications. For transportation of
people, long distance coaches or touring cars as well as intercity or city busses are being
used. Small commercial vehicles, the so called vans, are in use for vehicle weights from 2 to
6 tonne. Here, both front and rear wheel drives are utilised. At the lower side of vehicle
weights such as passenger cars and motorbikes, rear axle drives are applied, although on a
more limited scale due to the increasing application of front wheel drive.

Almost all commercial vehicles over 6 tonne are equipped with rear wheel drive, where the
power is transmitted from the engine through a gearbox and drive shaft system to the rear
axle of the vehicle.

Generally, two types of rear axles are applied in rear wheel driven vehicles; the single
reduction and the hub reduction rear axle (figure 1.1 and 1.2). The single reduction rear axle
consists of a spiral bevel or a hypoid gear. It is mostly used for typical long distance transport
applications and it is most widely spread. The hub reduction axle is a two stage reduction
axle, mostly consisting of a first stage spiral bevel gear reduction coupled with a planetary
stage in each wheel hub. This axle configuration leads to a relatively small crownwheel
diameter. Therefore these axle types are mostly used for off-the-road vehicles, where ground
clearance is a very important item. The rear axle ratio's mostly cover a range of 25 to 7,
depending on the axle and vehicle type. Long distance transport axles normally have a ratio
of 3 to 4, whereas city busses will have a ratio of 4 to 6. These are however indicative values.

1.2 Design and Development Process for Rear Axles.

Three groups of general data may be introduced here for the description of the rear axle, that
play a dominant role in the process of design and development. These are (figure 1.3):

* \/ehicle Application for the complete vehicle.

* Functional Requirements for different vehicle components.

* Design Features for component parts.
The Vehicle Application gives a description of the vehicle type, its driveline and the use of the
vehicle. These determine the Functional Requirements for the different vehicle components,
such as the engine, chassis, cabine and rear axle. These are the minimal requirements to be
achieved by every specific component, in order to assure a required reliability.
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For the design and development of different vehicle components, these Functional
Requirements can be achieved by applying suitable Design Features. These Design Features
can be considered as characteristic data for the design, by which Functional Requirements
can be fullfilled. They are not only to be specified at the preliminary design, but also at the
further development of each specific component.

| VEHICLE_APPLICATION }——;l7

FUNCTIONAL REQUIREMENTS

for vehicle components
eg. rear axle l

DESIGN FEATURES
for componenft parts
eg. rear axle gears

|[REAR AXLE_GEAR DESIGN]

Fig. 1.3 Three Basic Groups of General Data

The Vehicle Application can best be described in terms of typical vehicle related items such
as vehicle use, mass, type, configuration and general data on the driveline configuration,
when the aim is focussed on driveline design (Table 1.1).

Generally a wide variation of Vehicle Applications can be expected. A vehicle for long
distance transport will almost all the time travel on international highway with a cruising speed
pattern, characterised by high speed/low torque and an average nominal vehicle loading of
about 75%. On the other hand, an inter-urban distribution vehicle will travel a large amount
through urban regions and on inter urban secondary roads, with a more or less stop-and-go
speed pattern. These vehicles mostly will start fully laden and by distributing the goods, the
vehicle load will gradually decrease until the vehicle curb weight. Therefore the average
vehicle loading can be considered being about 50%. Each specific Vehicle Application will
give different driveline loadings.

Departing from a Vehicle Application, several Functional Requirements can then be derived
for different vehicle components, such as chassis, suspension, cabine, engine, gearbox and
rear axle. These requirements are specific goals for each of the components that have to be
met in the design and development process. The rear axle in general will have to fullfill two
main functions. The first one is to carry part of the vehicle load, which is normally fulifilled by
the rear axle housing. The second function is to transmit the engine power to the vehicle
wheels. This function is realised by the rear axle rotating parts such as gears and bearings.
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VEHICLE APPLICATION

*Vehicle Use

-Transportation type

-Total and annual mileage

-Route description:
Topografy flat / hilly / mountain
Road profile  city / urban / secundary

highway / off-road

Load pattern  full / half laden / empty
Speed pattern cruising / stop-and-go

*Vehicle Mass
-Gross vehicle mass GVM
-Gross combination mass GCM
-Type of goods to transport
-Overload Factor

*Vehicle Type
-Tractor / trailer; tractor / semi-trailer
-Truck, Lorrey
-Special transport vehicle
-Van

*Vehicle Configuration
-Chassis and cabine type
-Number of axles; single and tandem axle
-Number of tyres; tyre type
-Front area; Cw factor
-Rolling resistance

*Driveline Configuration
-2x4 | 4x4 | 4x6
-Engine data / exhaust brake / C-brake
-Gearbox ratio's / ratio spread / DirectDrive or OverDrive
-Secundary retarder / Intarder
-Transfer gear box; ratio; front-rear ratio
-Rear axle type / rear axle ratio

Table 1.1 Data on Vehicle Application
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In the further course of this thesis, we will focus on the torque transmitting rear axie gears.

The specific Functional Requirements for the rear axle gears can best be described with the
items as given in Table 1.2. Rear axle gears for off-the-road vehicles operating in rough
terrain conditions will exhibit very often high peak torques caused by mis-use situations. Here,
failures resulting from overload will play an important role. In contrast to these are the long
distance transport vehicles, where the amount of peak loads is limited by the vehicle
application and the relatively low wheel spin torque. Here the chance of fatigue failures will be
more dominant than failures resulting from overload. The set of Functional Requirements also
depends very much on the vehicle application.

FUNCTIONAL REQUIREMENTS
for Rear Axle Gears

*Strength -static overload / mis-use
-dynamic loading / endurance

*Noise -exterior noise / objective measurement
-interior noise / subjective indications

*Efficiency -fuel consumption
-maximum temperature / extreme conditions
*Weight
*Manufacturing costs
*Serviceability
*Reliability

*Vehicle related Dimensional Constraints

Table 1.2 Most important Functional Requirements for Rear Axle Gears

In order to meet these Functional Requirements of the power transmitting parts of the rear
axle, several Design Features can be defined or implemented in the specific development
stages for the rear axie gears as indicated in Table 1.3 on the next page.

These Design Features in fact consist of all specific data that determine the final design of
rear axle gears. The gear type, the gear geometry and the general manufacturing quality level
of the gears themselves. The material that is used for the gears as well as it's heat treatment
that is applied to obtain specific strength characteristics. Data on the lubricating oil and the
specifics on the gear assembly in the driving head casing complete the set of typical Design
Features for rear axle gears.
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DESIGN FEATURES
for Rear Axle Gears

1. Gear Type and Gear Geometry
- Spiral Bevel or Hypoid Gears
- Macro and Micro geometry
2. Manufacturing Method
- Gleason / Oerlikon / Klingelnberg
- Conventional machining (incl. lapping)
- Hard finishing
3. General Quality Level
- Pitch and profile errors
- Tooth thickness and runout errors
- Surface roughness
4. Gear Material
- Case carburising steel; nitriding steel
- Total percentage alloying elements
- Alloying elements (Cr,Ni,Mo,Mn,V,Ti)
- Hardenability / Jominy curves
- Tensile strength / impact toughness
5. Heat Treatment
- Carburising and quenching process
- Surface hardness and casedepth (flank/root)
- Tensile strength in the core
- Retained austenite; decarburising
- Core structure; residual stresses
6. Final Surface Treatment
- Fosfating layers
- Grinding of gear surface
- Shot peening of gear surface
- PVD/CVD surface layers
7. Lubricating Oil
- Oiltype (mineral, semi/full synthetic)
- Viscosity range
- Multi or single grade oil
- Dope package (EP, FM, V)
- Oil contamination
8. Gear Assembly
- Contact pattern (shape, size, position)
- Mounting distance; gear backlash
- Gear deflection under torque loading
- Stiffness drivinghead casing
- Bearing support and stiffness

Table 1.3 Some Typical Design Features for Rear Axle Gears
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For the development of rear axles in general, and rear axle gears in specific, two separate
stages in the design and development proces might be distinghuished. These are the Design
Stage and the Testing Stage, where there is a feedback of testing results in order to adapt
some design features on the basis of test results, if required. After validation of all functional
requirements of the rear axle, by passing through the entire testing procedure, normally a
Sign-Off will then be given. The definitive design will then obtain an official Production
Release and the Production Stage can be entered then.

This basic scheme of the Development Proces ( figure 1.4) is very schematically and it is only
to be considered as a general indication. In practice some stages will progress in a sequential
way, some others may progress in time parallel to each other. For different companies the
sequences of design and development may differ, according to their development policy.

In this thesis we will focus on those elements of the Design Features, that mostly play a
crucial role in the entire development proces of vehicle rear axle gears. The Design Stage for
rear axle gears, consisting of the afore mentioned Vehicle Application, Functional
Requirements and subsequent selection of Design Features, will cover the field of interest.

VEHICLE APPLICATION
FUNCTIONAL REQUIREMENTS
DESIGN FEATURES

[DESIGN STAGE |

— {REAR AXLE GEAR DESIGN |

: [ PrROTO RELEASE]
_ ] ] . — ]
A v
TESTING
TESTING STAG: ‘B
DESIGN
VALIDATION

v _ %

PRODUCTION  RELEASE

Fig. 1.4 Rear Axle Design and Development Proces
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1.3 Basic Field of Interest

The group of Design Features for the rear axle gears has been subdivided into groups of
distinctive parameters or variables, as indicated in table 1.3. Each of these groups consists of
noumerous elements of which some of them are interrelated. In general the total number of
all the Design Features mostly is relatively large. The designer of rear axle gears can, in
principle, select the required design data out of this relatively large amount of variables in
order to calculate and design a rear axle gear. With these variables, it is mostly possible to
fulfill most or all functional requirements. If however for every new rear axle design, a
selection would have to be made out of those variables, the work for a designer would be
very time consuming and difficult!
In most of the cases however, many of the design variables are already established or may
be considered as being fixed. In that situation, and this is mostly the case, the designer will
be confronted with the following groups of design features that are already determined:

- Gear Quality Level

- Gear Material

- Heat Treatment

- Final Surface Treatment

- Lubricating Oil Type.
The Gear Quality Level, the Heat Treatment and the Final Surface Treatment, in terms of
gear manufacturing method as well as heat treatment and final surface treatment
installations, can be regarded as already determined, being mostly the installed and available
production facilities. The Gear Material as well as it's supplier are mostly already given or
known, as is the Qil Type for lubrication. A companies policy for using a specific gear type
can be considered as fixed over a longer peroid, even from historical grounds. This situation
refers to a relatively large company with at least several thousands of units per year as a
production volume.
Purely for design purposes, the gear type and gear geometry as well as the gear assembly
are the groups of Design Features in which a gear designer generally has a given freedom of
selecting several variables in order to meet the Functional Requirements for rear axle gears.
Therefore, the following groups will be the point of interest in this thesis:

- Gear Type and Gear Geometry

- Manufacturing Method

- Gear Assembly.

1.4 Aim of this Thesis

During the last years, most of the truck manufacturers have been confronted with ever more
increasing demands on their products and on the development process. These demands are
reflected in higher engine power, lower vehicle noise, higher fuel economy and shorter lead
times in development.

Increasing engine power and higher power density, resulting in a higher loading of the
driveline and more severe use of vehicles, set higher demands on the loadability and the
endurance capability of the rear axle gears. The legislative stringent requirements for exterior
vehicle noise especially in urban areas have increased, as well as a decreasing interior noise
level which is considered as a quality item for commercial vehicles, also set high demands on
the noise level of rear axle gears.
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The need for fuel economy gives even more demand on the mechanical efficiency of the
driveline in general and on the rear axle gears specifically. Rear axle efficiency under typical
highway conditions, high speed and low torque, is required to be low for the vehicle overall
fuel consumption. For a typical hillclimb condition, low speed and high torque, the rear axle
efficiency requires a low value in order to limit the maximum temperature of the lubricating oil.
The allowable leadtime for the development of rear axles has been reduced during the last
ten years. The pace in which the market requirements change, requires a very flexible way of
responding in the development of new products.

In most of the commercial vehicles, single stage hypoid gears are used in the rear axles. Not
only does this give a better fuel consumption; the noise level mostly is lower. Also the number
of rear axle parts is smaller and hence the weight of a single ratio hypoid axle will be lower
than of a two stage hub reduction axle. For this reason, this thesis will be mainly focussed on
single stage hypoid rear axle gears.

One of the most important aspects of rear axle gears is however the strength of the teeth, as

it directly invokes the reliable functioning of the rear axle. Gear tooth breakage is in this

aspect very important; this type of gear failure would immediately lead to a non acceptable

standstill of the vehicle. Therefore the tooth root strength for rear axle gears will be further

investigated in this thesis. The main focus will be the design of gears on basis of verified

endurance tests.

Therefore, the AIM of this work will be:

a. To determine a practical design method for rear axle hypoid gears for commercial vehicles.

b. The calculation and design method should be focussed on tooth root strength.

c¢. The method should be practical applicable and therefore should be correlated with actual
endurance life test results with constant amplitude loading.

d. In relation to Vehicle Applications, a link to variable amplitude loading is required.

e. A strategy should be given for the design of a vehicle rear axle gear.

Here the rear axle noise, weight, efficiency and manufacturing costs are not to be considered
as boundaries or restrictions; the design should only be focussed on strength. As different
calculation methods for bevel and hypoid gears already exist at the time, it is NOT the aim to
give a quality indication on these calculation methods. Therefore, no judgement will be given
on the applicability of these calculation methods. The only aim is to use a certain calculation
method that will be made suitable to the design of rear axle gears, on a practical approach.

1.5 Procedure to be used

Starting point will be the already existing calculation standards for bevel gears, that are
generally accepted and described in international standards.

The analytical expressions for calculating the tooth root stress for bevel gears will be
analysed and compared. Not only the expressions for the individual factors will be compared;
their numerical values also will be evaluated. Special attention will be paid on those parts of
the calculations, that still leave a relatively large variation in their numerical value, which is a
result of the specific application, such as vehicle rear axie gears.

Current theory on the dimensioning and strength of hypoid gears will be discussed. Hardly
any international standard is available here; several manufacturers for gear production
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installations give design directives for the dimensioning of hypoid gears. Mostly it is up to the
individual designer or manufacturer of rear axle gears to apply specific hypoid calculation
methods. Mostly he is forced to develop these methods by himself for the specific vehicle
applications. During the last years however, many investigations have taken place by
research institutes on the strength of hypoid gears. The latest findings of these recent
investigations will be compared with already existing design directives for hypoid gears.

Endurance tests with Constant Amplitude Loading have been performed on rear axle hypoid
gears of four different axle types, covering a range of dimensions. Statistical evaluation of the
endurance results will be performed to determine the failure probability.

The results of theoretical calculations then will be compared with the experimental findings of
the endurance tests. If necessary, several factors in the calculations will have to be adjusted
in order to fit both results. The corrections in the calculations will have to be based on a
physically acceptable basis. In this way, a rather practical correlation will be obtained between
theoretically calculated and actually measured gear endurance life. These results will
however then only take account for a constant amplitude loading.

As rear axle gears for vehicles are hardly submitted to constant loading, a link is required
here to variable amplitude loading. Different types of driveline Loading Spectra for vehicle
driveline components will be evaluated. On the basis of a unified loading spectrum, some
tests with Variable Amplitude Loading will be performed on rear axle gears. The results of
these tests will then give an indication on the required damage accumulation theory and
possibly further corrections for life calculations.

Finally, a method will be introduced for designing rear axle gears in a preliminary way, with a
relatively low amount of available data. Scale laws for rear axle gears will be derived in order
to be able to design on a preliminary indication the most important dimensions.

1.6 General Remarks on Stress Calculations

Today, many international standards exist for gear calculations such as ISO, DIN, BS, and
AGMA. All methods will give different calculated stress levels for a given gear geometry and
known loading conditions. At this time, the ISO is working on an international standard which
is based on the different existing standards. It should be advisable, of course, to have one
and the same uniform and generally accepted method, all over the world. This will make the
exchange and comparison of calculation results more accesible and thus profitable.

It is however very well understandable that at the time there are many different standards for
gear strength calculations. This is not surprisingly, as each of these standards has been
developed individually by verification of results with practical field experience over several
years. As long as a calculation standard is verified on actual field experience, it will be a
prefered method, despite the fact that it may hold several simplifications and assumptions.

It should always be remembered that strength calculations are a tool for designing gears.
They are not a goal on their own; at least from the designers point of view.

Therefore simplifications on the actual gear loading and stress situation are well acceptable.
The most important aspect is that stress calculations should always be linked to field
experience or be compared to practical results. The fact that some parts of the calculations
are simplifications on their exact physical phenomena, is in this view very well acceptable.
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Loading conditions, such as variable torque and speed, vibrations and dynamic effects on
gearload can hardly be determined accurately. They are very much dependent on the
conditions of each specific application. Not only for new, but also for existing gear
applications, it is very difficult to predict the actual loading conditions on the gears to a level
of accuracy, that is comparable to which the geometry is described and designated.

On the material side, there will also be a variation in material characteristics such as for
fatigue strength. These will always lead to a certain variation in endurance life, even by
accurate and constant loading conditions. If the assumed values of loading conditions and
material characteristics are not on the same level of accuracy as the geometry and stress
calculations are, then it is not directly of interest to strive to one and the same uniform
calculation method for gears. For the time being, it seems to be more important to bring the
uncertainty in the loading conditions and the variation in material characteristics at the same
level of accuracy as the stress and geometry calculations are.

In view of this, the statistical character of determining the loads will become more important
in the future than the deterministic character of geometry and stress determination. Statistical
prediction and simulation of loads and loadspectra will become the most challenging item for
gear strength calculations in the years to come.

Therefore, more precise knowledge will be required on the actual loads that can be expected
on the gears at their specific application, rather than further improving on the other parts of
the calculation standards that are already accurate in their description. It appears to be not
that necessary to improve the influence of several geometric effects on the calculated stress.
A link between calculated stresses and actual loading conditions or vehicle applications here
is much more required. Especially in the events of failure, a reference can be established as
to what the goal should be to design gears.

If in the future gears will be loaded much more to their allowable stresses, then a uniform and
clearly predictable calculation method will be necessary. For this, a generally accepted and
uniform calculation method is advisable. But first, a correlation is required of this new method
with a very large number of actual field experiences.

These considerations are applicable to gear strength calculations that are based on analytical
expressions and equations. The last years, an increase in the use of numerical based
calculation methods can be seen. For the time being, these applications are resticted to
fundamental investigations and protoype comparison calculations. It has still not come to a
scale of importance as on general industrial installations. Here also, the confirmation between
calculated results and actual field experience is of vital importance. Furthermore, the required
mathematical and computer experience of numerical calculation techniques is quite larger
than it is for analytical techniques. In the end, the required accuracy for calculation methods
need not to be higher than the highest accuracy of one of the endurance strength determining
members such as material behaviour or loading conditions.

For design and development purposes however, in terms of relative improvements for
different designs, numerical calculations generally will be superior to analytical calculations;
especially when gears are loaded more and more to their limits. Not only will the experience
of the user with the calculation software be of great importance; the model assumptions and
the applied elements require a strict application when reliable results are expected.

In the end however, also these numerical calculation methods will require a comparison with
and an evaluation on actual field experience or testing results. If this is not the case, then the
accuracy of the calculation results will allways remain questionable, irrespective of the
calculation method.
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2 TOOTH ROOT STRESS CALCULATIONS OF BEVEL GEARS

2.1 Introduction

Gear tooth breakage can be considered as one of the major dimensions governing aspects of
bevel and hypoid gears for automotive applications. It is a failure mode that will almost certainly
lead to a standstill of the vehicle, which is an unacceptable situation for the user. In practical
vehicle applications, this type of failure should therefore be prevented. A static tooth breakage
may occur as a result of a mis-use situation of the vehicle driveline, leading to a sudden
overloading of the gears. A fatigue breakage of the teeth may occur as a result of a vehicle use
that goes beyond the specified application. As a result of it's importance, all standards on gear
design calculations are still under development [2.1] [2.2].

In this chapter, first an overview will be given on the most current available analytical methods
for calculating the tooth root stress for spiral bevel gears. The original expressions of the
standards appear to have relatively large differences. When the individual terms of the stress
equations are however rearranged, it will become clear that in fact they can be considered as all
being built up in one and the same way. In this rearrangement of the several stress equations,
the individual effects in different calculation methods can be compared directly. A comparison
between the individual factors of the different methods will be given. Finally the difference in
numerical values for the calculated tooth root stress will be discussed.

It will become clear that the differences in calculated tooth root stresses may be very large. The
differences in calculated safety factors are, however relatively small. In view of this, most of the
rear axle gears that have been designed all over the world with these different methods, resulting
in very different stress values, have not led to large differences in gear dimensions for
comparable vehicle applications. Therefore it is very important to realise that a given calculation
method, resulting in specific stress values, should always be linked to the accompanying material
values and safety factors. In that way it is possible to handle or compare different methods to
calculate and to design automotive rear axle gears. If a particular method is verified with practical
experience, then this will lead to a proven and reliable standard. If something here is changed,
be it the material values or several calculation factors, then also the reference value needs to be
altered likewise.

At this time several methods for bevel gear tooth root stress calculations are in existence. The
two most important are the international standards for the gear industry, which are used for a
very wide range of applications. Apart from these standards, the automotive industry has its own
specific methods; mostly because in this field bevel gears have specific conditions and well
known applications. In the course of the automotive history, specific standards have been
developed by several automotive manufacturers, as well as by manufacturers of bevel gear
machining systems such as Gleason, Oerlikon and Klingelnberg. These standards only consist
of analytical calculations.

The calculation methods for bevel gears that will be studied and compared, are:

A. ANSI/AGMA 2003-A86; approved as National Standard in May 1986 [2.3].

B. DIN 3991, Part 1 and 3; Deutsche Norm, DK 621.833.2.001.24, September 1988 [2.4].
C. Gleason; Gleason Works publications [2.6] to [2.8].

D. Oerlikon Version VL; Oerlikon publications [2.18] to [2.20].
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The Klingelnberg method [2.22, 2.23] is not included in this comparison. The reason for this is
that this manufacturing system is not used on a comparative scale in the automotive industry as
the other two systems are. In general industrial applications, however this gearing system is
much more widely used.

Prior to stress calculations, the proper geometrical data have to be calculated, forming the first
step in stress calculations. Therefore, first the different geometry calculations will be discussed.

2.2 Geometry calculations

2.2.1 Basic geometry expressions

All calculations on the geometry of bevel gears, required for stress calculations, come down to
applying the so called virtual gears. First the virtual helical gears that are to substitute the bevel
gears are determined. Finally these virtual helical gears are also substituted by spur gears of
which the calculation basis is known. Extra factors are of course introduced for taking into
account the difference between the real bevel gears and their virtual substitutes. This method
is very well known and it is in use since a relatively long time. Generally the following scheme can
be drawn:

|BEVE1_ GEARSI lHEI_ICAL GEARS l ISPUR GEARS'

(VIRTUAL) 2 ] (VIRTUAL) !

Fig. 2.1 Simplification of Geometry Calculations for Bevel Gears

Specific geometry data of spur gears are calculated in the normal section, where the geometry
and the equations are well known. Helical gears are substituted by virtual spur gears, and these
in their turn are calculated by the same methods, keeping in mind the difference between the
actual helical and their virtual spur gears.

Bevel gears first are substituted by virtual helical gears. These in their turn are then represented
by virtual spur gears. In fact these spur gears may then be considered as virtual® gears for the
actual bevel gears to be calculated. In fact, for hypoid gears, the same procedure is applied for
geometry calculations. This will be discussed in the following chapter.

The calculations of the gear geometry that are discussed here are all analytically, as the stress
calculations are. During the last ten years however, several numerical calculation methods have
been developed, that are mostly required for noise behaviour and contact pattern definition of
bevel and hypoid gears. Representants of these calculation methods are [2.49], [2.50] and [3.13].
Whereas numerical calculations are suitable for parameter studies and prototype comparison,
analytical methods are still widely in use for geometry and stress calculations.
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2.2.2 Comparison of geometry calculations.

The DIN [2.4] and the Oerlikon standard [2.18] have explicite chapters on the geometry of the
virtual gears. In the ANSI/AGMA standard [2.3] and the Gleason method [2.6], the calculation of
these virtual gears is incorporated in the different expressions; they can be derived by explicitely
rewriting several equations. The construction according to Tredgold [2.5] in which the virtual
helical gears are determined to substitute bevel gears, is used by all the considered calculation
methods. This means that the procedure of virtual gears is a generally accepted method of
simplifying the calculation of geometry and stress on bevel gears. Also the middle of the gear
facewidth is taken as the reference section for the basic geometry calculations on which later the
stress calculation is based. The four calculation methods will now be compared on some aspects
of geometry calculations of the virtual helical gears. Calculations of tooth proportions will first be
compared, and secondly the profile and face contact ratio’s will be discussed.

ANSI/AGMA

Most of the geometry data that are used as input for the calculations, are related to the outer
diameter or the outer cone distance of the gear. Also data as module are refered to this section,
mostly in the transverse section. Most of the gear data can then be recalculated to the mean face
width by means of the ratio outer to mean cone distance. The tooth root stress is however
calculated in the midface section. The profile contact ratio and the face contact ratio are
calculated in the normal section. Several of the output data refer to the gear outer diameter. The
active field of meshing is considered to be of an elliptic shape, resulting from the limited
dimensions of the contact pattern. Therefore the overall contact ratio is called a modified contact
ratio; it can be regarded as a vectorial addition of the profile and face contact ratio.

DIN 3991
This standard gives calculations of tooth proportions for gears with tapered and constant tooth
height. Here the mean of the facewidth is the reference section for the virtual gears and the
normal section is used. A limited contact pattern is taken into account by means of the effective
face width, which generally is 85% of the geometrical face width. This effective facewidth is
applied in the face contact ratio, the Helical Factor and the tooth root stress. The overall contact
ratio is the same as for helical gears, being the sum of profile and face contact ratio.

Gleason
The calculations according this procedure are identical to the ANSI/AGMA standard. Most of the
calculated geometry data are refered to the outside diameter and in transverse section. In
comparison with ANSI/AGMA only some symbols have different designations. These calculations
only refer to teeth of tapered tooth height.

Oerlikon
In this system, the P point on the gear face width is the reference for the stress calculations.
Depending on several factors, but mainly on the ratio cutter diamater to mean cone distance, an
Oerlikon gear may be of the so called P or N type of gearing. This reference point for stress
calculations may differ from the mean face width of the teeth. These calculations are applicable
to teeth of constant tooth height.

All four considered analytical geometry calculations hardly differ with regard to the calculation of:
* tooth proportions of the actual bevel gear geometry in the middle of the facewidth,
* virtual helical gears in the transverse and in the normal section.
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2.2.2.1 Tooth proportions.

In general, there is a clear distinction in describing the tooth proportions between bevel gears
with a tapered tooth height and those with a constant tooth height. Each type of tooth form has
it's own geometrical parameters that describe the actual tooth proportions.

For a clear comparison of gears with similar dimensions, the comparison should be made in the
middle of the facewidth, which is the reference point for all considered calculation standards.
Please note that in the text the words “crownwheel” and “gear” are both used to designate the
driven member of the bevel or hypoid gearset, whereas “pinion” stands for the driving member.

Gears with tapered tooth height
For determining the tooth proportions of bevel gears with tapered tooth height at the middle of
the gear facewidth, the following parameters are to be used [2.8]:

* gear addendum factor c,

* depth factor k

* clearance factor c,
Generally the values for these parameters depend on the gear type (hypoid or spiral bevel), the
number of pinion teeth and the gear ratio. The guidelines [2.15, 2.16] distinguish automotive and
non automotive applications, as well as different gear cutting methods.
The following tooth proportions are determined at the pinion and crownwheel mean diameter:

* whole depth h and working depth h,,

* addendum of pinion a, and gear ag

* dedendum of pinion b, and gear bg

* clearance c.
These are then calculated to the outer diameter of the gears by means of the ratio of mean to
outer cone distance and the addendum and dedendum angles. Most of the calculation output of
these standards contains information on tooth dimensions at the gear and pinion outer diameter.
Some typical geometrical characteristics of these gears, such as module and gear diameter,
almost always refer to the transverse plane at the gear outer diameter.
Corrections for machining characteristics and limitations are also given; these are not given here.

Gears with constant tooth height
The tooth proportions for bevel gears with constant tooth height are described by the following
parameters, that refer to the middle of the gear facewidth [2.20]:
* addendum factor hg,
* clearance factor kg
* pinion profile shift factor X,
The following tooth proportions are determined at the pinion and crownwheel mean diameter:
* whole depth H, and working depth H
* addendum of pinion H,, and gear H,,
* dedendum of pinion H;, and gear H;,
* clearance k.

When specific tooth proportion parameters are given, it may be possible to calculate the
geometrical dimensions from a tapered tooth to a constant tooth and vice versa in the middle of
the facewidth. The equations from table 2.1 can be used for this of which the dimensions are
given in fig. 2.2.
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Tooth Proportion Factor

Tapered Tooth Heigth

Constant Tooth Heigth

Working Depth

h, = % *k

H =2 (h,- ko)

Whole Depth h =%*k* (1+c,.) H, = (2 * hg,- k)
Clearance c="%"K*c, ks =given
Pinion Profile Shift -=%*k*(%-c) X = given
Gear Profile Shift -=%*k*(c,-%2) X2 = = X1

Pinion Addendum

a.=%*k*(1-c,)

Hr = (Pgy = Ko+ Xinr)

Pinion Dedendum

bp="%"k"(c,*+cC)

Hiy = (N = Xim)

Gear Addendum

as=%*k*c,

He, = (B = K- X)

Gear Dedendum

Table 2.1

bg=%"k*(1-c,+¢c) | Hp = (g + X))

Geometrical Factors for Tooth Proportions in the Midddle of the Facewidth.

To obtain the absolute values for the different tooth proportions, the factors of Table 2.1 have

to be multiplied by the mean normal module.

TAPERED TOOTH HEIG TH
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Fig. 2.2 Tooth Proportions for Tapered and Constant Tooth Height in Mid-Face
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2.2.2.2 Profile and Face Contact Ratio

The expressions for the contact ratio's, based on the original equations for the different
standards may be rewritten for reasons of comparison.
The Oerlikon expressions may be modified as:

evoz
S = € * (1+—7) (2.1)
vB

The DIN expression may be rewritten as:

1 eVCX
e =085x¢e,.x(1+ *
w w * 0.85 evB) (2.2)
The ANSI/AGMA and Gleason equations as:
m,=mg (2.3)

Equation (2.2) includes the influende of the effective facewidth, which according to DIN is 85%
of the geometric facewidth for general situations. The value of 0.85 is written here explicitely,
whereas the expression for the face contact ratio ¢, is based on the full geometrical facewidth.

The individual values for the profile and the face contact ratio, calculated according to the four
different methods for one and the same bevel gear geometry, do not differ substantially. The
overall contact ratio's, however differ to some extent. The amount of the difference depends on
the gear geometry. The ANSI/AGMA and Gleason methods determine a modified contact ratio;
the limited contact dimensions are taken into account by assuming an elliptical shape for the
contact pattern. The total contact ratio here is the vectorial sum of the profile and face contact
ratio. In the DIN and the Oerlikon method, the total contact ratio is the numerical sum of profile
and face contact ratio. The ratio of the total to the modified contact ratio may be expressed as:

1+€VO(
w__ S 04
T 24)
1+( ey
mF

A graphical representation of this last relationship is given in figure 2.3, as a function of the ratio
of profile/face contact ratio. For most automotive applications, the ratio of the profile to the face
contact ratio mostly lies between 0.5 - 1.0. It shows that for automotive bevel gears, the value
for the total contact ratio according to Oerlikon generally is about 15 - 30% larger than the
modified contact ratio calculated according to ANSI/AGMA and Gleason, when the efffective
facewidth of 85% is assumed. When the effective facewidth of the gears is not taken into
account (it then is equal to the geometrical facewidth), the difference will become 30-40%.
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Fig. 2.3 Ratio of Total Contact to Modified Contact Ratio

All considered calculation standards use virtual helical gears for describing the
tooth proportions of bevel gear teeth.

The geometry in the normal section at the middle of the gear facewidth is used
as the reference point for geometry calculations in all standards, some with
minor modifications for the position of contact patter.

The individual values for the profile and face contact ratio are next to identical
for one and the same gear geometry, when calculated by different standards.
For the total and the modified contact ratio’s, however, differences in the
numerical values arise betweeen the different standards. This is a result of the
different definitions for the total and the modified contact ratio.

The total contact ratio of DIN and Oerlikon will be about 15-30% larger than the
modified contact ratio of AGMA and Gleason and will be 30-40% larger when
the effective facewidth according to DIN is not taken into account.

This is valid for general automotive applications.

* * * *

*
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2.3 Tooth Root Stress Calculations
2.3.1 Basic Stress Expressions

Since the beginning of analytical stress calculations on gear teeth, the model of a one side
clamped cantilever beam with a specific section and loaded with a unit load, has been used. In
[2.1] and [2.30] the history of gears and their calculations is given, as well as the important
equations that have been used. In view of this it not surprisingly that the basis of almost all tooth
root stress calculations is very close to this type of modelling. The calculation standards that are
considered here, all are built up in a similar way. Therefore, this setup is taken over here.
Nowadays, numerical calculation methods such as Finite Element Methods (FEM) or Boundary
Element Methods (BEM) may be used, but these calculations are not considered here.

The basic set up of the analytical stress calculations for tooth root stress of gears in general and
bevel gears in specific, can be seen as the product of three groups of independent factors, where
each group on it's own is also a product of individual factors. These three groups of factors are
the Load, the Geometry and the Material Factors. Generally the basic lay-out for root stress
calculations is:

Actual Tooth Root Stress =
Load Factors * Generalised Stress * Geometry Factors

F

— aneometry (2-5)

o,, =MNK, _, *
12 load b*mm

n

Actual Tooth Root Stress <
Allowable Tooth Root Stress * Material Factors

O10 < Ogy * MM potericy (2.6)

2.3.2 Comparison of Stress Calculations

Recently, several comparisons have been made between the different standards of bevel gears.
These comparisons have up to now only been performed on a more or less integral way. This
means that the numerical values of the final calculation results are compared, together with a
comparison of the basic set-up [2.36] to [2.39].

The individual load, geometry and material factors ought to be comparable, qualitatively and also
quantatively, in order to perform a comparison of the individual standards. At a first glance, the
expressions for tooth root stress appear to differ in a relatively large extent. However it is
possible to rearrange all the used factors in these equations in one unified way, thereby giving
the possibility of directly comparing all the different factors separately. The stress equations will
be rearranged, keeping the sequence of the individual factors as much as possible the same,
although in some way it may be slightly arbitrary. However, the idea is to make at least one kind
of uniformity in these expressions. The original expressions of the several standards will be given
in the original symbols.
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The basis for this is the generalised tooth root stress. This generalised tooth root stress is
defined as the tooth tangential load in the middle of the facewidth, divided by the geometrical
facewidth and the mean normal module. It has the dimension of a stress. In this expression, a
uniform and equally distributed tooth load along the facewidth is assumed.

This generalised tooth root stress is:

F
bxm

mt

2.7)

n

2.3.2.1 ANSI/AGMA

This standard is built up of fundamental rating formulas for bending strength and applies to
tapered depth and uniform depth teeth. Only the major factors which are known to affect gear
tooth fracture at the root are considered. It's use is intended to compare several different gear
designs. It is based on the cantilever projection method that is modified in order to consider:

* the bending and the compressive tooth root stress

* inclined contact lines on the teeth

* stress concentration at the root fillet

* load sharing between adjecent teeth
Some of the most important conditions on which the ratings can be determined, are:

* proper lubrication

* normal misalignment and load deflection

* case carburised steels

* optimal or developed contact patterns
The original equations are:
- 2000+T,*K, 1 *KS*Km

¢ *
K Fxdxm K +J

\'4

(2.8)

Y
TR B 2.9

oo™
T myxK, r F, m

p

S et (2.10)
wit KT*KR .
Si<S (2.11)

In the ANSI/AGMA standard, the Size factor is included in equations of the calculated stress for
practical reasons, as indicated in Chapter 9 of that standard. This is also the case for the
Gleason standard. When rewriting however the stress expressions of the standards in the unified
way of equation (2.5), the Size Factor Ks of both the ANSI/AGMA and the Gleason standard will
be designated here to the Material Factors.
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Therefore, the calculated tooth root stress of the unified expression principally differs from the
one of the original standard. For this reason the actual stress here will be designated by the sign
" Expressions (2.8) to (2.11) are rewritten in the same way as expressions (2.5) and (2.7),
leading to the following unified expressions (Attachment 2.3.1):

m
S//t:Ka*_L*Km* Fmt *1(— Tn *_I_D.c—’)*Kf*mN*Ki*l—*_,_'*f_
K F*mmn Y Y. K K, r, F,
1 1 1
SieSg x o K x 2 2.13
a KR S KT ( )

2.3.2.2 DIN

Principally this standard is based on the work of Winter and Niemann [2.5]. In later years the
equations have been further developed, finally leading to the DIN 3990 standard for helical gears
[2.4]. On basis of this the definitive DIN 3991 standard for bevel gears has been issued in 1988.
The equations in this standard are valid for so-called Null or V-Null gears, this means that the
value of the profile modification factors or its sum is zero. Furthermore it is limited to bevel gears
of which the virtual helical gears have a contact ratio less than 2. The material values have a
failure probability of 1%. The variation of geometric values as well as the estimate on real
loadings, manufacture and mounting errors and lubrication give rise to some variation in results.
The factors on the gear geometry have to be calculated according to the expressions of the
standard. The load factors can be determined in four different ways, namely Method A, B, C and
D. In the expressions, the method that has been used, will have to be indicated by an index. The
accuracy and the amount of calculations differ between all four methods. The expressions of
Method B have been used here.

The four basic expressions are:

OF:oFo*KA*Kv*KFB*KFq (2.14)
F
Op =Y Y Y x YV (2.15)
0 bef*mmn
0 0
Fp~ = *Ybfezr*YR:elT*szEF—G— (216)
F min f min
o
S=—>=Srmin (2.17)



22 2 Tooth Root Stress Calculations of Bevel Gears

Rewriting equations (2.14) to (2.17) to the same uniform way (Attachment 2.3) yields:

o b*mmn o

F
OF:KA*KV*KFB*KF Mt *Yfa*Ysa*Ye*YB*YK*BQ— (2.18)
f

Ofe
OF= Y YarelT* YRreIT (2.19)
F min

2.3.2.3 Gleason

This company has a very long experience on bevel and hypoid gear design and manufacture,
mostly for automotive applications. The literature in which the stress calculations are given, [2.9]
to [2.16], shows the development of their calculation method throughout the years. In fact the
ANSI/AGMA standard and the Gleason method are very much interrelated to each other. The
Gleason method is mostly applicable to automotive applications. The four most important
expressions from this standard are next to identical to the ANSI/AGMA standard with the
exception that the Gleason method uses American units.

Wt*KO Pd Ks*Km
et D 0,061 (2.20)

J= _te €y 9
m+«K R F P, (2.21)
s Sa*K,
w K K., (2.22)
S¢S, (2.23)

In Attachment 2.3 these equations are rewritten to the unified equation:

m
S//tzKo*—l*Km*_—@—E—*i(: m”*iq)*Kf*mN*Ki*i*E*—E
K, F*mmn Y Y. K; K, R, F,
1 1 1
SesSarq*Kir g (2.25)
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2.3.2.4 Oerlikon

The strength calculations are based on Niemann [2.17], and given in [2.18] to [2.20].

0,=B,*q,*Z, (2.26)
B,=CxCp+C+Cy*B, (2.27)
B 10%«M,, 528
e dp_,*b*l’e ( - )

Op

O, <—
b<g (2.29)

Attachment 2.3 gives the unified expression of the Oerlikon equations, which is:

d
0,=Cg*Cp*Crx b*nn;t *qw*CB*cosBm*F’" (2.30)
m, p
0,0t~ (2.31)
Sg '

Figure 2.4 gives all expressions for the four calculation methods, expressed in one and the same
uniform way where the individual factors (i.e. Load Factors, Geometry Factors and Material
Factors) now can directly be compared. The positioning of several factors into one of the three
groups of Load, Geometry or Material Factors may be arbitrary at a first glance; the specific
influences however described by these factors correspond physically very well to each other.
It can be seen that these methods are all built up in an identical way, although they originated
and have been developed more or less independently of each other. The original expressions
give the impression of relatively large differences in the basic set up, but after rewriting them it
appears that the layout is basically very much comparable. Some calculation methods have
aspects that others do not have. The AGMA and Gleason standards, for instance, do not have
an explicit Helical Factor, but the influence of inclined contact lines is taken into account by the
modeliing of the Effective Facewidth and the Load Sharing Factor. The DIN and Oerlikon
standards do not have an explicit Point of Load Application and Gear Cutter Factor.

* The expressions for the tooth root stress according to the four standards can *
* and have been rewritten by separating Load, Geometry and Material Factors. *
* All expressions of the individual factors are now written similar and thus can *

* be compared directly in this way.
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Several other specific influences on the calculated tooth root stress of bevel gears are not taken
into account in these methods. These influences may be:

- The conical shaped form of the pinion body as well as the flat body of the gear.

- The possible small rim thickness of the crownwheel body beneath the teeth.

- The helicoidal form of the teeth over the pinion cone.

- The varying value of the spiral angle over the facewidth.

- The varying angle of the contactline over the facewidth.

- The sensibility of the contact pattern due to deflection and loading.

- The growth of the contact pattern due to deflection and loading.

- Concave/convex or convex/concave contact of both flanks.

- Non-symetrical tooth form because of different pressure angles at Coast and Drive.

- Mounting and assembly deviations of pinion and crownwheel.
Some of these mentioned factors may be of a relatively large influence, others may be of smaller
interest. Some of these factors may possibly emerge in new standards, such as the ISO/DIS
6336. These go beyond the scope of this thesis; therefore these aspects are not dealt with here.

In the following part, the individual Load, Geometry and Material Factors will be compared and
discussed. The summarising conclusions of the comparisons will be given in the text. Some
individual formulations and their numerical values will be analysed in Appendix 2.2.

2.4 Load Factors in Stress Calculations

The four Load Factors account for the influence of:
* Varying loads due to changing load conditions in time: Application Factor.
* Dynamic loads of gear meshing during operation: Dynamic Load Factor.
* Load distribution along the face width: Faceload Distrubution Factor.
* Load distibution on adjacent teeth: Adjecent Load Distribution Factor.
In this part these load factors will be considered and compared for the four calculation methods.

2.4.1 Application Factor

In general, this Application Factor takes into account the loading on the gears, caused by
external sources. The influence of the amount of vibrations and variable loading conditions is
contained in this factor.

The Application Factor is directly related to the driveline loading spectrum which is determined
by the actual loading conditions during operation. The values for the Application Factors can vary
from 1.00 to 2.50 or even higher, depending on the application and the calculation standard.
There are no mathematical expressions given in the different standards. Only indications are
given as to what appropriate values may be used. The numerical value for the Application Factor
is to be left to the specific application and the field experience the designer has with gears of
similar applications. The range of applicabilty of the two international standards is relatively wide
because of the intended use. The Gleason and Oerlikon standards refer mostly to automotive
applications; some limited industrial use is however foreseen.

It becomes very obvious that the indicated values for the Application Factor are guidelines. Most
of the other factors that are used in the strength calculations have a relatively high accuracy. In
comparison to this, most other Factors are calculated with an accuracy of about 1-5%, whereas
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the accuracy of the values for the Application Factor are about 50%. In view of this, it is very
important to realise that it is necessary to try to estimate the exact value of this application factor.
In fact it is much more important to designate the actual value of the application factor, than to
try to improve on the accuracy of further geometry factors.

2.4.2 Dynamic Load Factor

This factor takes into account the additional dynamic gear loading, mostly as a result of gear
meshing. In general the circumferencial speed at the pitch diameter and the gear quality are the
two most important influences on the value of the dynamic factor.

In general the methods of ANSI/AGMA and Gleason give a non linear relation between the
Dynamic Factor and circumferential speed. The DIN standard gives a linear dependency of the
Dynamic Factor with speed; the Oerlikon method gives a next to linear relation with speed. If all
gear qualities are comparable, then there is only a small difference in the numerical value for all
four methods. This is only valid for a speed of about 10 m/s. For automotive applications the
maximum pitch line velocity will be about 10-13 m/s; the load increase resulting from dynamic
loads will therefore generally be very low. Incidental load increase that is caused by the gear
shifting of the gearboxes is not incorporated in this factor; these loads are considered to be part
of the loading spectrum and therefore belong to the Application Factor. Compared with specific
literature [2.34], one might expect that the Gleason or ANSI/AGMA method gives a good
description of load increase as a function of speed, being more or less non lineair with speed.
Table 2.5 gives the different parameters that are covered by the dynamic factor for each method.

Pitch Gear Gear Gear Contact
Speed Quality Load Material Ratio
AGMA X X - X --
DIN X X X - -
Gleason X X - X -
Oerlikon X X X X

Table 2.2 Parameters in the Dynamic Load Factor.

2.4.3 Face Load Distribution Factor

For spiral bevel gears this accomodates for the non uniform load distribution along the facewidth
of the teeth. The load distribution factor generally is a function of:

- Gear facewidth and spiral angle.

- Gear quality and longitudinal correction or crowning.

- Gear deflections in different directions at a given gear load.
The ANSI/AGMA-standard gives a very clearly load-dependency of the Face Load Distribution
Factor. The three other methods give a Face Load Distribution Factor, that has a constant value
or is hardly independent of the gear unit load. A comparison of the parameters that are used in
the different standards is given by Table 2.3.
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Bearing Gear Gear Gear Face

Support Quality Load Deflection Width
AGMA X -- X - X
DIN X - - - -
Gleason -- -- -- X X
Qerlikon X X X - X

Table 2.3 Parameters in Face Load Distribution Factor.

In literature [2.40] to [2.47], a large number of parameters plays a role in the distribution of the
gear load over the facewidth. As a result a relatively large variation in the value of the calculated
Face Load Distribution Factor may be expected between different standards.

Generally, the accuracy by which the Face Load Distribution Factor is determined in the
standards, is in contrast to the accuracy by which almost all other factors are determined. As the
amount of the gear-to-pinion deflection will have a major influence on it, specific deflection
measurements will be required to accurately determine the value for the Face Load Distribution
Factor.

2.4.4 Adjacent Load Distribution Factor.

This implies a load distribution between adjacent teeth that may give rise to extra loading
because of pitch errors. This phenomenon differs from the load sharing by ideal gears without
pitch errors and a contact ratio larger than unity. In that situation the actual load on the tooth is
lower than if only one tooth would take the entire load.

The only standard using this factor is the DIN. The other calculation standards do not give an
explicit indication on this effect.

The ANSI/AGMA and Gleason standards have a so called inertia factor K;. According to the text
in these standards, this factor would allow for the same effect as the DIN used factor. However,
this factor K; is only described as a function of geometrical gear data and does not depend on
pitch errors, gear quality and tooth stiffness. Therefore this K; factor has been submitted here
to the geometry factors, as can be seen in figure 2.4.

* The Application Factor and the Face Load Distribution Factor are the two most *
* important stress determining values. Both values are however not determined *
* with the same accuracy as the other Load Factors are. For automotive rear axle *
* gears, both their numerical values are larger than the Dynamic Load factor and *
* the Adjecent Load Factor. *
* In some calulation standards the values of the Application Factor and the Face *
* Load Distribution Factor are however only given as relatively rough indications. *
* More acurately determining the value of both Load Factors will very well *

* improve the applicability of the calculation methods.
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2.5 Geometry Factors in Stress Calculations

The Geometry Factors all take account of the influence of the gear teeth geometry on the value
of the tooth root stress. Generally the following factors are used:

* Tooth Form Factor

* Stress Concentration Factor

* Load Sharing Factor

* Helical Factor

* Cutter Diameter Factor

* Effective Facewidth Factor

* Mean Facewidth Factor

* Point of Load Application

* Bevel Gear Factor
These factors originate from the beginning of the stress calculations. A distinct separation of the
different Geometry Factors for all calculation standards and their individual influences has been
made here. In this chapter, only the most important factors will be discussed where a comparison
will be made between the different calculation standards.

2.5.1 Tooth Form Factor

The Tooth Form Factor describes the influence of the form of the tooth in terms of lever bending
arm of the gear unit load and the relevant tooth root section. The principal stresses that are taken
into account for the resultant root stress are also incorporated in the tooth form factor.
Therefore it incorporates:

* The position of the gear unit load

* The accompanying bending lever arm

* The critical section of the tooth root

* The principal stresses to account for in the critical section of the tooth root.

2.5.1.1 Tooth Loading Model for Tooth Root Stress

The loading on a tooth is relatively complex. Therefore a simplification of the actual stress
condition has always been used in analytical calculations in order to be able to describe
mathematically the stress situation at the tooth root as given in [2.25] to [2.31]. The following
considerations are always used for a given and arbitrary tooth section with a loading:

* The normal tooth section is considered

* The tooth is considered as a cantilever beam

* The tooth load is distributed uniform along the facewidth

* Gear load is parallel to the root line of the tooth

* Gear unit load is Fn/b

* Tooth root thickness at the critical section is calculated

* Bending lever arm of the load h is calculated

The standards that are considered here, all use a comparable tooth model for calculating the
tooth root stress. In the past, several different models have been proposed, such as the wedge
shape [2.5.6], but these will not be considered here. The different calculation methods differ in
the assumption that several principal stresses may participate in determining the effective stress.
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This will further be analysed and discussed.

All calculations for the tooth form factor use a similar approach to the resulting stress value,
where several idealised and principal stresses are active at the same time. The following
principal stresses may be observed on the root tension side, exclusive the influence of stress
concentration (see fig. 2.5):

* Bending stress:

F
cb:_bﬂ *§g *COS(P (2.32)
S

* Compressive stress:

Odiﬂ*l*simp (2.33)
b s
* Shear stress:
r-rn 1 scoso (2.34)
b s

All calculation standards neglect the stresses, resulting from a non equal distributed compressive
stress along the root section and the influence of a frictional component. Generally, the influence
of both mentioned effects on the resulting stress level is less than 1 - 5%. The influences of
residual stresses of final surface treatment and resulting from shrinkage fits, are also neglected.
For a more dimensional stress situation, the effective stress according to the theory of maximum
energy [2.27] is:

0g=/(0,-0,)° +(g*T)? (2.35)

The tooth root stress for one tooth and exclusive the stress concentration can be written as the
generalised tooth root stress of equation (2.7), multiplied by the Tooth Form Factor.

The general expression for the Tooth Form Factor now can be expressed in terms of the
geometric values of the tooth when the three principal stresses, bending, compressive and shear
are taken into consideration and introduced in expression (2.35):

F m
O mt_ . mn cos¢Qp *\j [6(-@-) —tanq)]2+0(02 (236)
bxm_, s cosq, S

As will be seen in the following part, the general expressions for the Tooth Form Factor in the
investigated standards all use different combinations of principal stresses.

It will be shown that it is possible to rewrite all tooth form factors in a one and the same way in
order to compare them, in a similar way as has been done with the stress equations.

One has to bear in mind that for the pinion and the gear, the tooth form factor has to be
determined separately. For bevel gears with non equal pressure angles on both flanks, the tooth
form factor will also differ for loading on different tooth sides.
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2.5.1.2 Comparison of Tooth Form Factors

The expressions for the Tooth Form Factor according to the different standards are rewritten.
The results of rearranging these expressions into a uniform way are summarised here.

ANSI/AGMA

In this standard the bending stress resulting from the tangential component of the gear normal
load and the compressive stress resulting from the radial component, are both taken into
account. The weakest section of the root is determined by the Lewis parabola. The point of load
application is not at the tooth tip, but is determined on basis of theoretical contact lines; generally
the load is tangent to the basecircle diameter.

The equation of the original Tooth Form Factor is:

P
YPG:g* <
3 K ( 1 tanq)N) (2.37)
(—-
Xy 3t
Rewriting this into a unified expression gives:
1 mmn hN
—= *[6(——)-tan
v 2fN) [6( 21‘N) bpl (2.38)

In the original standard, the stress concentration factor is incorporated in the tooth form factor.
The expression here 1/Y is written without the Stress Concentration Factor K; and the diametral
pitch Py,.

DIN

Here only the bending stress is considered. The weakest root section is determined by means
of the 30°-tangent; the gear load is applied at the tooth tip.

The original expression is:

h
6x—2 *COSU -,
m

Yer—— (2.39)

) *cosa,,

S
( Fn
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mn

and it can be rewritten into:

m cosq h
Y, =(—20) 1 (——2) «[6(—2)] (2.40)
an COSCXn Fn
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Gleason
Here the expression is identical to the ANSI/AGMA formulation; there is only a slight difference
in some symbols.

Oerlikon

In the equation for the tooth form factor, all three principal stresses, bending, compressive and
shear stress are incorporated. For the shear stress, a factor of 2.5 was proposed [2.17]. The
weakest root section is determined by the Lewis parabola; the point of load application is not at
the tooth tip but is comparable with ANSI/AGMA and Gleason:

m
q,- cosa My
cosQ; S,

(6(-”'-) ~tana)?+6.25 (2.41)
sf

is rearranged into:

m l;
qW: mn cosqx *\j (6(__.'_)-tancx)2+(2_5)2 (242)
S

S, COsq, .

Table 2.4 gives schematically the involved assumptions for determining the Tooth Form Factor
of the calculation standards (see also fig. 2.5).

Calculation Principal Stresses Point of Critical Tooth
Standard involved Load Application Root Section
DIN Bending Stress Tooth Tip 30°-Tangent

AGMA / Gleason Bending Stress Upper Point of Lewis Parabola
Compressive Stress Single Mesh

Qerlikon Bending stress Upper Point of Lewis Parabola
Compressive Stress Single Mesh
Shear Stress

Table 2.4 Different Assumptions in Tooth Form Factors.

It will become clear that generally the numerical values of the Tooth Form Factors may be
different when calculating one and the same gear geometry according to different standards. A
comparison of equations (2.38), (2.40) and (2.42) already shows this. For one part there may
be a difference in the bending lever arm and tooth root section; on the other hand the summation
of several principal stresses will also influence the value of the tooth form factor. In general, the
values of the Tooth Form Factor according to the standards will be quite different, when
calculated for one and the same gear geometry. The reasons for this are:

* The bending lever arm of the gear unit load according to the DIN-standard is about two
times the one according to ANSI/AGMA and Oerlikon.
* The root sections do not differ to a large extent; the Lewis parabola gives values that are

about 10% larger than the root thickness according to the 30° -tangent of DIN.
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* Different stress components are taken into account for the final Tooth Form Factor. The
compressive stress will decrease the resultant calculated stress in comparison to a purely
bending stress.

For normal automotive rear axle gear geometry, the calculated values for the Tooth Form Factors
according to the different standards relate to each other in the following way.
Bending stress for ANSI/AGMA and Oerlikon is about 50% of the value according to DIN, mainly
because of the difference in lever arm. Compressive stress for ANSI/AGMA and Oerlikon is
about 10% of the bending stress in DIN. Shear stress according to Oerlikon is about 30% of the
bending stress in DIN.
Therefore, the Tooth Form Factor according to Oerlikon is about 1.40-1.50 larger than the one
according to ANSI/AGMA and Gleason. The tooth form factor according to DIN is about 2.0-2.5
larger than ANSI/AGMA and Gleason. These values are generally applicable and relate only to
state of the art automotive rear axle gears. Larger differences may of course occur, a difference
of a factor 4 can be considered as being possible [2.35] to [2.39], but these are considered as
exceptions.
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Fig. 2.5 Different Model Assumptions for Tooth Form Factor

2.5.2 Stress Concentration Factor

The loading of the tooth gives a local stress concentration that is normally located in the area of
fillet radius which has a trochoidal form. The influence of this stress concentration on the tooth
root bending stress is accounted for by the Stress Concentration Factor.

ANSI/AGMA

The effective stress concentration and the point of load application are considerd by this factor.
It is determined by the work of Dolan/Broghammer [2.6] which is based on model tests on two
dimensional gear templates under isochromatic light.

DIN

These equations are based on the work of Hirth [2.48] and have been generated by a
comparison of measured and calculated stress values on actual helical gears. Here only the root
radius, bending lever arm and tooth thickness are used as variables.
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Gleason
These are the same as for the ANSI/AGMA standard.

Oerlikon

Because Niemann suggested a factor of 2.5 in the expression of the Tooth Form Factor [2.17],
no further stress concentration effects have to be taken into account. This means that here the
Stress Concentration Factor holds a value of unity.

Comparison of Stress Concentration Factors

A comparison of the calculated Stress Concentration Factors according to the four standards is
given in fig. 2.6. Here they are plotted as a function of the ratio of root radius to tooth thickness
at the point of maximum assumed stress. The parameter is the ratio of load bending arm to tooth
thickness at the point of maximum stress. There are two differences in the sensitivity. The
sensitivity of the stress concentration factor to the ratio of rootradius to tooththickness is roughly
a factor 2 higher for DIN than as it is for ANSI/AGMA. The sensitivity of the stress concentration
factor for the parameter of the ratio bending arm to tooth thickness is however by far larger for
ANSI/AGMA than as it is for DIN. As the normal practical range of relative blade edge radii lies
between 0.15 and 0.25 times the tooth thickness, the difference in calculated stress
concentration factor between ANSI/AGMA and DIN will be relatively small. One has to bear in
mind however that for one and the same gear geometry, the bending arm according to
AGMA/Gleason/Oerlikon is smaller than the bending arm according to DIN.
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Fig. 2.6 Comparison of Stress Concentration Factors
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Generally it can be seen that for gears with a relatively small blade edge radius of about 0.15 of
the tooth thickness, the Stress Concentration Factor for DIN is about 10-15% larger than the one
for AGMA and Gleason. For gears with a relatively large blade edge radius of about 0.25 times
the tooth thickness, the Stress Concentration Factor according to DIN can be about 30-40%
larger than the one calculated according to AGMA and Gleason. This means that the differences
between the Stress Concentration Factors dependsamong others on actual blade edge radius.

2.5.3 Load Sharing Factor

The tooth root bending stress as calculated up to now can be considered as the result of one
tooth taking the entire load. In most cases where the contact ratio is sufficient large, more teeth
share the entire gear load. This is accounted for by means of this factor, which is generally called
the Load Sharing Factor. In the standards, the profile contact ratio of the gears is the only
parameter that influences the calculated value for the Load Sharing Factor.

ANSI/AGMA and Gleason

Here the product of the Load Sharing Factor my with the Inertia Factor;K,ym *K now is
considered as the factor taking into account the sharing of the entire tangential load by several
teeth. This Inertia Factor K; is part of the Geometry Factor J. It accounts for the lack of
smoothness of tooth meshing action at gears with a modified contact ratio less than two.

For modified contact ratio larger than 2, Gleason standard gives an expression that is used here.
In some way it may seem to be arbitrary to combine the Inertia Factor with the Load Sharing
Factor, but both factors are only dependent on the gear geometry. Therefore it is appropriate to
range it under the geometry factors. The product of both my and K, gives a continuous function
when varying the modified contact ratio, as drawn in fig.2.7.
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DIN
In this standard, the tooth root stress for the load at the tooth tip, is recalculated for the situation
of the load at the point of outer single mesh.

Oerlikon
This expression is given in [2.17].

2.5.4 Helical Factor

In spiral bevel gears the contact lines are not parallel to the root line of the teeth. As a result of
this, the tooth root is loaded differently. The Helical Factor takes account for this difference. In
all standards the contact lines on the gear teeth are assumed to be straight lines that are
positioned under an angle, determined by the base helical angle. For bevel gears, the base spiral
angle gradually changes over the face width; normally it increase from the inner to the outer
cone. This depends mostly on the ratio of gear cutter radius to outer cone distance or gear outer
pitch diameter. Theoretically, the contact lines for bevel gears will therefore be curved and no
straight lines, as is assumed in the calculation standards. Fig. 2.8 shows the contact lines of a
hypoid gear that has been loaded during standstill. The contact lines are distinctively visible on
the teeth, showing that the assumption of a straight contact line may very well be close to reality.
For spiral angles from 30° - 40° and a face contact ratio larger than unity, the difference in
calculated helical factors between DIN, ANSI/AGMA and Gleason values will be relatively small.
The values according to Oerlikon may deviate more.

Fig. 2.8 Contact Lines on a Hypoid Pinion
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The DIN Standard gives explicitely a Helical factor, whereas the others do not give this. In the
AGMA/Gleason method, the influence of the inclined contact lines is incorporated in the Load
Sharing and the Effective Facewidth. This is an important aspect that needs special attention,
when comparing the different Factors with each other.

2.5.5 Cutter Diameter Factor
The American calculation methods indicate that there is an influence of the cutter radius on tooth
root stress. The European standards do not give this influence. These differences will be
analysed and discussed however in Chapter 2.8.3.

2.5.6 Point of Load Application
As the radius of the Point of Load Application does not coincide with the pitch radius of the virtual
gears, the value of the gear unit load will have to be corrected for. For the ANSI/AGMA and
Gleason standards, the ratio of the pitch diameter of the virtual gears to the radius of the point
of load application determines the value of the required correction. The DIN and Oerlikon
standard do not contain this factor.

2.5.7 Mean Facewidth Factor.
Only the Oerlikon method contains this factor, where the dseign point of the bevel gears, N-point,
is recalculated to the mean facewidth.

2.5.8 Effective Facewidth Factor.
Because of the limited contact pattern on the tooth facewidth, the effective facewidth will differ
from the geometrical.

2.5.9 Bevel Gear Factor.
Here only the DIN standard has given a possibility for the influence of the non involute profile of

the bevel gear teeth. The last proposal brings the value of this factor to unity, which means that
for the time being, no standard allows for any modification for typical bevel gear effects.

* The Tooth Form Factor, the Stress Concentration and the Load Sharing Factor *
* have the largest differences of all the Geometry Factors. *
* The differences in the Tooth Form Factor are the result of the different tooth *
* loading models and the principal stresses that are taken into account. *
* The differences in the Load Sharing Factor result from the assumptions in *

* the distribution of the gear load over the meshing teeth.
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2.6 Material Factors in Stress Calculations

In this part the material related aspects will be treated.
These material characteristics are given in the following factors:

* Allowable Material Stress

* Life Factor

* Size Factor

* Temperature, Roughness and Support Factor.

* Safety Factor
In practice, most automotive rear axle drive gears are made from case carburised gear steel.
Therefore only this type of material will be considered here. The material data only refer to
unidirectional loading, which means that only one side of the gear flanks is loaded. As the loading
conditions of automotive gears are bidirectional, sometimes a correction may be necessary on
the endurance values.

2.6.1 Allowable Material Stress

The Allowable Material Stress is determined by the material that is used, as well as by several
metallurgical and heat treatment variables. The failure probability of the allowable endurance
stress also determines the value.

The most important aspect however, is that the Allowable Material Stress is mainly determined
by the calculation standard. Both should always be linked to each other. A change in one will lead
to a different value of the Safety Factor. A change in the layout of the stress caiculation or even
a change on a part of it, requires a corresponding adaption of the Allowable Material Stress.

Features ANSI/AGMA DIN 3991 Gleason Oerlikon
Failure Probability (%) 1 1 5 -
Endurance Limit (N/mm2) 380-480 640-1080 210 410-460
Endurance Cycles ) 1*107 3*10° 6*10° 2*10°
Slope SN curve: k =) 7.65 -- 5.68 5.00
Constant C ) 8.22 -- 15.39 --
Slope k, () 30.96 -- infinite infinite
Value C, () 1.68 -- -~ --
Static Limit (N/mm2) 700 -- 700 -
Static Cycles ) 1*103 - 1*10° -
Minimum Life Factor (-) 1.00 -- 1.00 1.00
Max. Life Factor () 3.33 2.50 3.38 -~

Table 2.5

Characteristic Material related Values for Bevel Gears for Hardened Case Carburised Steel, that
have been established from data and graphical representations of the different standards.
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Therefore the allowable material stess is not only purely material related, but very much
dependent on the calculation method. This very important aspect is forgotten many times. It is
the main reason for relatively large differences between the absolute values of the endurance
limits for the different standards when identical materials are applied. The calculated stress and
the allowable endurance stress should therefore always be linked to the calculation standard for
which it is established. It cay never be that the value of a certain stress, calculated with a specific
standard is compared with the allowable stress of a different standard!

In Table 2.5 the values for the allowable material stress in terms of endurance limits and failure
probability according to the different standards are summarised.

Gleason gives a specific value with an accompanying failure probability; this is valid for
automotive applications. Both international standards give for a specific failure probability a range
for the allowable stress values, which is a result of the general applicability of these standards.
Here each specific application will have it's own appropriate Allowable Material Stress.
Remarkable are the large differences between several allowable endurance stresses. The
difference between the allowable value for Gleason and the maximum value for DIN is about a
factor 5. In view of this, the difference between the endurance values for AGMA and Oerlikon is
relatively small with about 4-8%. Compared with this, the difference between the endurance
values of AGMA and Gleason is relatively large with about 80-130%. This means these allowable
stress values are strictly to be used in the standard for which they have been determined.

2.6.2 Life Factor

When the designed gears are to operate on a number of loading cycles that differs from the
number for infinitive life, the Life Factor accounts for the change in allowable maximum stress
that may be allowed. This factor is based on the SN curves of the gear material or on the SN
curves of the gears themselves. These curves are mostly generated by laboratory tests on
specimen or on actual test gears with given dimensions.
From the four different standards, specific data have been derived on basis of the given
endurance data; they are given in Table 2.5. Some of the values have been determined by
analysing graphical representations of the different calculation standards. This means that not
all values from Table 2.5 can directly be found within the standards.
The most important features that are related to the life factors are:

* Value for the Failure Probability

* Value for the Endurance and Static Limit

* Number of Cycles for Endurance and Static Limit

* Slope of the SN curve for the “limited life” and "infinite life” region.
The difference in the endurance limit is minimal a factor 2; it may even amount to a 5 fold
difference between the DIN and Gleason recommended values. In this way, it is very evident that
the calculated tooth root stress values and the accompanying allowable stress values should
always be linked to each other within one and the same calculation standard.
The slope of the SN curves also shows very distinctive differences between the individual
standards, as is the ratio of maximum allowable stress to endurance limit. In fig. 2.9 the Life
Factors for bevel gears are drawn as a function of the number of cycles. In some way, this life
factor may be considered as the basic form of the SN curve of the gear material according to the
specific standard. In that graph, also the life factors for helical gears according to the AGMA, DIN
and ISO/DIS standards for case carburised gears are given for reasons of comparison. It shows
quite clearly that the slope of the line representing the life factor for bevel gears differs from the
line of the Life Factor for helical gears.
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Fig. 2.9 Comparison of Life Factors that have been derived from Standards

2.6.3 Size Factor

This factor takes account for the influence of the gear dimensions. In both European standards
this Size Factor is incorporated in the material related stress values. In the American standards
this factor is included in the equations for the calculated stress. The reason for this is, as
indicated in (2.3), that SN diagrams can be designed for a wide range of different gear sizes. For
a direct comparison on calculated stresses of the four standards, this Size Factor has been
designated to the group of Material Factors. The reason to do so is the fact that the size will
likely influence the allowable material strength, than that it will influence the calculated stress.

ANSI/AGMA

It is recommended to use a value of unity for mean normal module less or equal than 5 mm. For
larger moduli, a size factor larger than unity may be required, but hardly any information is
available here. The corresponding appendix E, of which the text indicates that it is not to be
considered as an official part of the standard, indicates that an ISO proposed Size Factor may
be used. This should however be done with caution.
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DIN
This Size Factor is identical as in the standard for helical gears.

Gleason
The Size Factor here is based on the diametral pitch at the outer end of the tooth.

For Oerlikon there is no Size Factor incorporated in the calculations.

A comparison of the Size Factors according to the different standards is given in fig. 2.10.

For a correct comparison of the Size Factors according to the scheme of figure 2.4, the inverse
value of the Size Factors according to ANSI/AGMA and Gleason has to be taken.

The size factor is given as a function of the mean normal module. The independent variable of
the Gleason expression has to be translated to the mean normal modulus. For many automotive
rear axle gears the mean cone distance is about 85% of the outer cone distance; the mean spiral
angle ranges between 30° to 40°. Therefore, the outer transverse modulus is about (1.4 - 1.6)
x the mean normal modulus. This value has been used in fig. 2.10.
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2.6.4 Temperature Factor

The ANSI/AGMA standard gives an indication on the decrease of the maximum stress value,
when the peak operating blank temperature is higher than 120° C.

2.6.5 Roughness Factor

The DIN indicates the influence of surface roughness in the tooth root on the maximum stress.
Two methods may be used, for which the simplified one will give sufficient accuracy. the
maximum influence is a decrease of 10% for surface roughnesses in the root higher than R, of
16 micron.

2.6.6 Support Factor

This influences the material characteristic for crack growth resistance. Only the DIN standard
gives a relation. For case hardened steels, the support factor lies between 0.95 and 1.05.
Assuming a value of unity will lead to a small error.

2.6.7 Safety Factor

The Safety Factor is a value that is called for in the DIN- and Oerlikon standards. The value of
this factor should of course be determined by the application and the foregoing experience of
succesfull and non successfull operations. In the ANSI/AGMA and Gleason standard the Power
Ratings are indications on a potential succesfull design.

* The Endurance Strength and the Size Factor give the largest difference in the *
* Material Factors for the different calculation standards. *
* The difference in the allowable endurance strength is the direct consequence *
* of the large differences in calculated stress levels between the standards. *
* It becomes clear, that the allowable strength and the calculated stress should *
* always be directly linked to each other within one calculation standard, rather *
* than being directly related to the material itself. *
* The Life Factors show distinct differences, mostly in reference to those of *
* helical gears. Apparently the slope of SN curves for bevel gears would differ *

* from the one for helical gears, when one and the same material is used.
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2.7 Calculation Example

In the following part some results of the different calculation methods will be compared, based
on the scheme of figure 2.3. The values for the Load, Geometry and Material Factors, as
determined in the last chapter, will be compared as well as the final influence on the calculated
tooth root stress. For this purpose, two fictional rear axle gear sets for a truck with a GVM of 32
tonne vehicle are used. The gear outer diameter is about 16.5", or 420-425 mm. The “Maximum
Output Torque” for this axle type is 32.000 Nm, according to the definition of chapter 6.2.1.
Axle ratio's are 43/13=3.31 and 43/7=6.14, hereby covering the normal range of ratio's for this
kind of application. Gear geometry data for these two fictional gear sets are given in Table 2.6.
For each gear ratio, three different spiral angles are chosen, so that in fact the calculation results
of six different gear geometries can be compared.

Rear Axle Ratio () 3.31 6.14
Teeth Numbers (=) 13/43 7143
Mean Normal Modulus  (mm) 6.78 6.56
Gear Outer Diameter (mm) 421 424
Gear Facewidth (mm) 65 65
Mean Spiral Angle (°) 30/36/42 32/38.5/45

Table 2.6 General Bevel Gear Geometry Data of Calculation Example

The results of this comparison are of course only valid for the gear geometry used here. For
gears with a different gear geometry the results may vary, but the conclusions from this exercise
may be considered as being representative for general automotive applications. Large
differences are not very likely to be expected and the tendencies will remain the same. The
stress values are given according to the expressions used in chapter 2.3. The values for the
ANSI/AGMA and Gleason calculations will therefore differ from the official Gleason output on the
Dimension Sheets, because of the shifted position of several factors, as for instance the Size
Factor. From these calculation examples, the following conclusions may be drawn on the
geometry calculations and the different Factors.

Geometry Calculations: Profile and Face Contact Ratio

The results of the calculations on the profile and face contact ratio's are given in Appendix 2.7,
which are summarised in figure 2.11

The transverse profile contact ratio, calculated according to the different methods only lead to
very small differences. The same can be concluded for the face contact ratio, when the full
geometric facewidth is assumed. The face contact ratio according to DIN, when a 85% effective
facewidth is taken into account, leads to 15% lower value in the calculated face contact ratio than
the other methods. The value for the total contact ratio according to Oerlikon is about 30 - 40%
higher than the modified contact ratio according to ANSI/AGMA and Gleason. The latter is about
15 - 30% lower than the total contact ratio calculated according to DIN, when a 85% effective
facewidth is assumed.
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Fig. 2.11 Contact Ratio’s acc. to Different Standards

Tooth Root Stress

In general the stresses calculated according to DIN give the highest values. The values
according to Oerlikon give the lowest values. Here only the calculated nominal tooth root stresses
are compared, meaning that all load factors are set to unity. Then generally a factor of 1.25 to
1.40 of difference exists between the Gleason and the Oerlikon calculated stresses. A factor of
1.35 to 1.80 between DIN and Oerlikon and a factor of 1.20 to 1.35 between DIN and Gleason
may be expected with regard to the calculated pinion stresses. These differences between
calculated stresses are generally to be expected for automotive rear axle gears with comparable
gear geometry and when all load factors are set to unity. In this comparison, the size factor is
incorporated in the material factors, which is different than the computer output of the official
calculations. There the size factor is incorporated in the calculated stress value of the
ANSI’/AGMA and Gleason method, whereas it is not in the DIN and Oerlikon methods.

Load Factors
The Face Load Distribution Factors show a relatively large difference. There may be a difference
of minimum 15% to maximum 60% between the values according to several standards,
depending on the value of the torque. Not only the value but also the character of the Face Load
Distribution Factor according to ANSI/AGMA is very different from those of other standards, as
can be seen in figure 2.12.
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Fig. 2.12 Different Face Load Distribution Factors for the Calculation Examples

The Dynamic Factors have a very small difference. The circumferential speed and general gear
quality of automotive rear axle gears normally lead to values for the Dynamic Load Factor that
comes close to unity with differences between the individual values generally less than 10%.

Geometry Factors
The Tooth Form Factors differ to a very large extent; a difference of 150% may be attained. The
Stress Concentration Factors may differ to 40% maximum. The Load Sharing Factors may differ
to 20-35%, the Helical Factors to 10-25% and the Effective Facewidth gives 15% difference.

Material Factors
The Allowable Stress values differ to a very large extent. In fact, here it can be seen that the
combination of calculated and allowable stress should be unique; values for allowable strength
and calculated stress are not interchangeable. The Size Factor is incorporated in the stress
values of ANSI/AGMA and Gleason. It is not in DIN and Oerlikon. This factor alone may already
give differences from 15 to 30%. The Life Factors give differences to maximum 25%.

Safety Factors
Despite the relatively large differences in calculated root stress, the difference in Safety Factors
between the different calculation standards is relatively small. Low calculated root stress and low
allowable stress lead to comparable safety factors for high root stress and high allowable stress.
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This comparison of the calculated tooth root stresses is based on the unified way of rewriting the
original stress equations, as has been done in chapter 2.3.

The indicated differences are of course dependent on the gear geometry. When for instance a
large tooth thickness correction and a small blade edge radius are used, several factors will
change to a different extent than when a small tooth thickness correction and a large blade edge
radius are used. Also when a small teeth number with a large spiral angle or a high teeth number
with a small spiral angle are used, the differences between the several factors may change. The
tendencies of the relative difference between the calculated stresses in general and between the
individual factors in particular, will not change to a large extent however.

The indicated differences should therefore only be seen as general tendencies; they are however
representative for normal automotive rear axle gears.

The ratio of calculated root stress between DIN and AGMA was about 1.15 - 1.50 for the pinion
and 1.20 - 2.0 for the gear. For pinions with a large teethnumber (20 or more) the ratio of
calculated stresses was about 2.50. This was exclusive the Application and the Face Load
Distribution Factor, that were kept equal. The ratio of Safety Factors was about 1.0 - 1.5, which
is smaller than the ratio of the calculated root stresses.

The most striking differences between several parts of the calculations are given in fig. 2.13.
Here can be seen that the largest differences appear for the Face Load Distribution Factor, the
Tooth Form Factor, the Load Sharing Factor and the Allowable Material Stress. In this figure, it
is not indicated which calculation standard gives the lowest and which gives the highest value;
only the relative difference between several methods is indicated.

' 1 Dynamic Load Factor 5-10%

RELATIVE DIFFERENCE IN CALCULATED FACTORS (%] 2 Face Load Distribution Factor 15-60 %
T 3 Tooth Form Factor 45-150 %

f 604 o b | 4 Stress Concenfration Factor 10 -40%
(b 5 Load Sharing Factor 0-25%

| T T - 6 Melical Factor 20-35%

701 7 Effective Farewidth 0-15%

8 Cutter Djameter Factor 0-15%
9 Allowable Stress Number 10 -500%

60 - — 10 Life Factor 0-25%

11 Size Factfor 15-30%

12 Tooth Root Stress (excl load Fctrs) 15-80%
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Fig. 2.13 Differences between Several Calculated Factors

A comparison on the calculated stress for bevel gears [2.35], in which 10 different gear
geometries were compared, showed the calculated DIN stresses to be larger than the root
stresses according to ANSI/AGMA. This is given in fig. 2.14. One may here observe the trend
that in general the safety factors according to AGMA are lower than DIN for identical geometries.
Differences between US and European market requirements, different Product Liability laws and
differences in the requirements for vehicle weight are reflected here for a part.
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Other studies on the comparison of calculated tooth root stresses for helical gears [2.10]-[2.13]
indicate that the calculated tooth root stresses according to DIN are larger than those of AGMA.
There appears to be no constant and uniform difference between both standards, which means
that no simple conversion factor can be applied between both calculation methods. The ratio of
tooth root stress for pinions according to DIN and AGMA lies in the range of 1,2 -2,0 with an
average of 1.5; exclusive the influence of the Load Factors. It comes down to about the same
ratio as has been found in the calculation example. Also the sensitivity of the calculated tooth
root stress to a change in pressure angle, helical angle, profile shift factor and cutter edge radius,
is different for the ANSI/AGMA, DIN, Gleason and Oerlikon method.

Literature very clearly indicates that although there are very large differences between the
calculated stresses, the differences between the safety factors are remarkably smaller. This is
caused by the values for the allowable material stress, as most of these methods have been
verified with actual field experience to some extent.

The sensitivity of stress to changes on the geometry is different, so that optimum designs or
relative geometry changes in order to obtain a required improvement will differ, depending on the
applied calculation standard. Above all, the conclusions from the calculation example coincide
very well with other findings on bevel gears and even on helical gears. Therefore the findings of
both calculation examples may be considered to be representative for automotive applications.
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Fig. 2.14 Comparison of AGMA and DIN Calculations [2.35]

* When calculating tooth root stress for gears that are representative for general *
* automotive applications, the following differences may be observed: *
* Difference in root stress may be 20-100% and even higher, but the difference *
* in safety factors will be lower to a maximum of 50%. The calculated stress and *
* the allowable stress are always linked within a calculation standard. *
* Differences of individual Factors may amount to 40%, but the Tooth Form Factor ~ *
* and the Face Load Distribution Factor may show larger differences. *
* The largest difference in the Face Load Distribution Factors attains about 60%; *

* for the Tooth Form Factor the maximum difference may be 150%.
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2.8 Comments on the Most Important Differences

When the numerical results of the individual factors for the different calculation methods are
compared, then a striking difference can be seen. The Factors with the largest differences are:
* Face Load Distribution Factor
* Tooth Form Factor
* Gear Curvature Factor
* Size Factor.

2.8.1 Face Load Distribution Factor

From the calculation examples it has become clear that the Face Load Distribution Factor gives
very large differences between the calculated tooth root stress. A review of this factor may lead
to a more specified expression and hence a more accurate value. The value for the Face Load
Distribution Factor and it's dependence on the crownwheel output torque needs to be designated
therefore. For this reason, the deflection behaviour of the tested axles has been measured.

2.8.1.1 Deflection Measurements of Driving Head

In general, the gear deflection depends on the value of the applied torque, the gear geometry,
the stiffness of the driving head, as well as the fixation of the driving head to the axle casing. On
all the investigated axle types, deflection measurements have been performed with the driving
head assembly mounted in the axle housing, so as to assure a similar deflection behaviour as

i

Fig. 2.15 Test Rig Lay-Out for Deflection Measurements
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during the endurance tests. The deflection measurements have been performed on rear axles,
with input torques increasing from zero to nominal value, both on Drive and Coast condition. Both
input and output shafts rotated at low speed in order to minimise setting effects on bearing rings.
These are standard procedures for rear axles, of which a description and the results are given
in [4.17]. Gear deflections on only two axle ratio's have been measured, namely 4.10 and 2.93.
All axles have a straddle mounted pinion and ring gear. Fig.2.15 shows the test rig lay-out.
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Fig. 2.16 Summarising Results of Deflection Measurements
Relative displacements between Pinion and Crownwheel at Midface

During the deflection measurements, the displacements of the pinion and the crownwheel are
measured in the horizontal and vertical plane; both in axial and radial direction. From these
values, the deflections between pinion and crownwheel have been calculated at the gear middle
facewidth as a function of input torque for Drive and Coast condition. The resuilts of these
measured deflections for the tested rear axle gears are summarised in fig. 2.16. The deflections
are related to the crownwheel outerdiameter, therefore they are called relative deflections.

From this, the following characteristics have been derived:

* All deflections can be considered as being proportional to the applied input torque; a
linear relationship may be assumed here, with the exception for low torques.
* The displacement of the pinion is mainly influenced by the gear geometry of the pinion

and the stiffness of the pinion bearings. Of the latter, the axial bearing preload and the
roller geometry play a dominant role. A second order influence is the bending stiffness
of the pinion shank; a small diameter may give rise to an additional shank deflection.
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* The displacement of the crownwheel is mainly determined by the stiffness of the driving
head casing and the gear geometry. The crownwheel itself as well as the satellitehousing
on which it is bolted on, can be considered as a rigid and almost undeformable body
which deflects under the influence of the gear loads. Bearing preload plays a minor role.

* The movement of pinion and crownwheel at Drive condition in the horizontal plane may
be directed outward or even inward, mainly depending on the axle ratio.
* The axial load on the pinion diameter causes a bending moment which counteracts on

the bending moment of the radial load. Depending on the amount of both bending
moments, it may cause the pinion and crownwheel to move out or inward to each other.
On axle ratio's of about 3, the relatively large pinion diameter originates a large bending
moment causing both members to decrease their distance. On ratio's of 6 or 7 the
influence of the separating load is dominant, forcing both members to move outward.
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Fig. 2.17 Relative Displacements in Axial Direction

According to [2.41] there are only two important deflections that largely influence the face load
distribution. These are the axial pinion displacement and the radial crownwheel displacement.
These deflection values, at the nominal output torque, can be related to the crownwheel outer
diameter. These measured values are given in fig. 2.17 and fig. 2.18. Added are some external
values, [2.41] and [3.10]. These values have been corrected for the maximum torque according
to the definition of Chapter 6. Here a typical relation between maximum output torque and
crownwheel outer diameter has been established. The measured deflections from both sources
have been corrected for an assumed maximum torque, that is based on the apparent
crownwheel diameter. In all situations, a linear relation between torque and deflection was
assumed. This means that the external derived deflection values of figures 2.17 and 2.18
actually differ from the measured values; they are however scaled so they can directly be
compared with the registered deflections from the tested rear axle gears. It should be noted that
the external added values are for rear axle drives with an overhung pinion mounting. Therefore
they are larger, apart from the two small axles. The tested axles have straddle mounted pinions.
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Fig. 2.18 Relative Displacements in Vertical Direction

From the graphical representations, it may be concluded that both f,* and f,* range between 1.00
and 2.00. The ratio f /f, is about 1.5 to 2.0. It may be concluded that generally the deflections of
the tested rear axle gears are well within the range of or even smaller than for comparable rear
axles with overhung pinions. The deflections are directly proportional to the applied output torque,
as has been shown in figure 2.16. Only for the low torque range there may not be a clear relation
between deflection and torque, as here the gear backlash, bearing preload and other non
linearities from housing geometry may distort a pure linear relation.

2.8.1.2 Proposal for Face Load Distribution Factor

The difference in the values of the Face Load Distribution Factors according to the different
standards is very pronounced. Not only does the absolute value differ, the dependency of this
value with the torque varies to a large extent for the different standards. The Face Load
Distribution Factor is mainly influenced by the:

* type of bearing support for pinion and crownwheel

* deflection behaviour of both gears

* amount of lengthwise crowning.
According to the DIN standard, the stress on gears with lengthwise crowning is considered to be
increased by 50% in comparison to non crowned gears, as indicated by the muitiplication factor
of 1.50. Here the equal distribution of the faceload which has a rectangular form over the
facewidth, would change into an elliptic form at crowned gears, even when no gear deflection
or misalignment occurs. No indication can be found on the reason for this value of 1.50. It is
expected that the purely elliptical distribution of the gearload over the face width might be the
reason for this value of 1.50. By considering a different, more practical function for the load
distribution, the multiplication factor may correspondingly attain a different value.
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Now the integral of a given load distribution over a certain length, is equal to the actual load itself.
Therefore the general equation for the total tooth load, based on a given faceload distribution
function f(x) is expressed as:

Fiot = T*b” = [f)dx (2.43)

Here the integration boundaries are determined by the arc length of the total gear facewidth b'.
The equally over the total facewidth distributed faceload is f,, = F/b'.

In DIN, the rectangular distribution of the faceload for line contact is replaced by an elliptic form.
This assumption is valid when both ends of the crowned teeth are not loaded at full torque. Now
the following expression for an elliptic faceload distribution function may be introduced:

0 =, 125 (2.44)

When this expression is integrated conform equation (2.43) over the full arc of the facewidth b’
then the maximum value of the faceload, in the middie of the facewidth, appears to be 1.50 times
larger than the equally distributed load F/b' (Attachment 2.8.1). It does not mean that this value
of 1.50 for the face load muiltiplication factor is the same as the factor that is used in the DIN
standard, but the correlation is striking. This may be the reason for the value of 1.50.

The assumption of a pure elliptical load distribution over the contact lines may however not
correspond to the actual situation. It may be more realistic to assume a faceload distribution in
which the region of maximum load is more stretched out on a greater length than when a purely
elliptic load distribution is assumed. When a third order term is introduced, by which 90% of the
maximum load is stretched out over 50% of the facewidth, the following face load distribution
function can be applied:

2x.,2 X\
fix) = f_ * [1+(Z2) -10(=
(x) =1f, [ (b,) (b,)] (2.45)

Now when this function is integrated, the maximum value for the faceload is 1.30 times the value
for the equally distributed faceload. As this last faceload distribution is assumed to be more
realistic, a value of 1.30 for the faceload distribution factor should be used for a straddle
mounted pinion. Likewise, the mulltiplication factor in the expressions for the faceload distribution
factor according to DIN may also be changed into 1.30 instead of using the current value of 1.50.

Paul [2.41] has derived on basis of his strain measurements several expressions for the face
load distribution value. For normal deflections and standard crowning values in automotive rear
axle gears, his expressions yield figures for the face load distribution factor that are considerably
lower than 1.50. Fresen [3.8] has stated that in any case the minimum value of the face load
distribution factor is more than 1.00, being a result of the different values for the tooth stiffness
at toe and at heel. It may well be that a minimum value of 1.10-1.15 can therefore be assumed,
which would resemble an actual minimal value of face load factors to be encountered in
automotive rear axle gears. In this view, the value of 1.30 for the multiplication value of the Face
Load Distribution Factor appears to be realistic for automotive rear axle gears that have a normal
facewidth with regard to the crownwheel outer diameter and that have standard crowning values.
This is irrespective of the type of bearing, straddle mounted or overhung.
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Fig. 2.19 Different Functions for the Face Load Distribution

Therefore it is suggested to use for bevel gears with normal deflections, a value of 1.30 for the
multiplication factor of the Faceload Distribution Factor, instead of the 1.50 value of the DIN
Standard. When a linear relation between misalignment and torque loading is present, then the
value for the Faceload Distribution Factor is constant and independent of the torque.

2.8.2 Tooth Form Factor

The difference in the values of the Tooth Form Factor, calculated according to the four
standards, is purely a result of the different stress models for the tooth root. First the principal
stresses that contribute to the final tooth root stress and second the length of the bending arm.
For DIN, only the bending stress is assumed, where the tooth load is applied at the tooth tip
hereby giving a maximum bending lever arm. ANSI/AGMA and Gleason take next to the bending
stress also the compressive stress. Oerlikon also adds the shear stress. The bending arm for
the tooth form factor according to ANSI/AGMA, Gleason and Oerlikon is about half the value of
the bending arm according to DIN. As a result of these assumptions, the difference between the
several tooth form factors may amount to a value of about 2 - 2.5. The largest difference is
between DIN and ANSI/AGMA, whereas the Oerlikon calculated value mostly lies in between.
As these differences in the respective tooth form factors are a direct result of the different stress
models in the standards, the differences will have to be accepted as they are inherently related
to the specific standards.
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2.8.3 Gear Curvature Factor

Only the ANSI/AGMA and Gleason standards take account for this influence. Here, literature
gives some contradictory comments on this issue which requires some further examination.
Fresen [3.8] has performed strain measurements on models of gear and pinion teeth that were
loaded with a point load that was positioned at one point of the facewidth. Hardly any influence
of curvature on tooth root stress was found here. Coleman [2.20] performed strain
measurements on Aluminum models of gear teeth with uniform depth. Apart from the lengthwise
tooth curvature, the pressure angle was also changed. The conclusions are not very clear, but
one might expect an influence of curvature since later on this was introduced in the standard.
Coleman [2.11] reported the results of life tests on actual gears that were built in driving heads.
There was a distinct difference in endurance results between a 7.5" and a 12" cutter for a
crownwheel outer diameter of 12.5". These life results, of which it is to be expected that all other
aspects such as driving head and gear geometry were kept unchanged, show a clear difference
in endurance life between both cutter radii, as indicated in figure 2.20.

According to the SN curves that were established out of these test results, the relative difference
in gear life when changing the cutter diameter, depends on the stress level. At a high stress level
the difference in life is about two to threefold, whereas for lower stress levels the difference
increases. Both SN curves have different slopes, and thus different values of the k-faktor in the
expression for the endurance life. This is an indication to different stress situations.
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Fig. 2.20 Measured Endurance Cycles [2.11]

Stadtfeld [3.13] did theoretical FEM-calculations on constant tooth height gears. He also found
hardly any influence on the calculated root stress when the cutter/diameter-ratio was reduced
from 0.52 to 0.34. For smaller cutterdiameters, the calculated pinion tooth root stress decreased
by about 20% at high torque values. In these situations, no deflections between crownwheel and
pinion were assumed. When deformations are incorporated, however, he found that the
calculated pinion tooth root stress increased at an increasing cutterdiameter.
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This was beleived to be the result of the higher sensibility of the contact pattern to deformations,
when a larger tooth curvature was applied. Gears with small curvatures tend to be more stable
than gears with a large curvature, with regard to contact pattern sensitivity at given deflections.

The model stress measurements had a load position on the tooth model that remained
unchanged, irrespective of the value of the load or the cutter radius. The endurance tests were
performed on complete driving head assemblies. Here the load on the teeth will have a different
position by the contact pattern shift due to deflections. This may well explain why the stress on
a gear model without deformations will not or hardly change when the gear curvature is altered,
whereas it will change on an assembled gearset with deformations. This means that the
curvature of the gear teeth themselves would have hardly any influence on the stress for a fixed
load position.

When the cutter/gear-ratio is changed, is does not only changes the tooth curvature; the
sensitivity of the contact pattern due to deflections will also be changed. This means that the
contact pattern of the gears under an increasing load will shift when mounted in a driving head
and are exerted to deflections. This contact pattern sensitivity is mostly determined by the
cutter/gear-ratio. Mostly the shift of the contact pattern is to the toe side. For taper tooth height
gears, this will lead to an increase in root stress because of the smaller normal tooth thickness.
This effect is smaller at constant tooth height gears, where the normal tooth thickness only
slightly changes over the facewidth. At these gear types mostly the cutter/gear ratio is relatively
low. It is possible that this effect is more pronounced at taper height gears than at constant
height gears, simply because of the different ratio's of cutter-to-crownwheeldiameter. This effect
may be the reason for not finding any influence on measured strain at models where the point
of load application remains the same, irrespective of the load. However, on a built-in gearset the
centre of the contact pattern and thus the point of load application may shift under load,
depending on the cutter/gear ratio, hereby increasing the root stress. This means that the
influence of gear curvature on tooth root stress will only be noticeable on gears that are
assembled in the driving head casing and not on gear models with a fixed load position.

It may well be that the change in tooth root stress will not or hardly be influenced by the curvature
of the gear teeth themselves, but will mainly be changed by the shift of the contact pattern under
load as a result of a changing contact pattern sensitivity. The influence on tooth root stress will
be small when the contact pattern does not shift to a large amount. However, when the contact
pattern shifts remarkably under the influence of load, the tooth root stress will change as a result
of a different tooth section at a different position on the face width. For calculations at variing
loads, this aspect then needs to be incorporated, because this will influence the cumulative
fatigue damage. The influence of the cutter diameter on stress will probably be more pronounced
on bevel gears with a tapered tooth height than on bevel gears with a constant tooth height,
altough this mainly depends on the ratio of cutter-to-crownwheeldiameter.

The influence of gear curvature on tooth root stress may be taken into account by the following
parameters:  * ratio of gear curvature to crownwheel diameter

* change of tooth profile over the face width

* sensitivity of contact pattern under load

* amount of load variation during operation.
The first two aspects are purely geometrical, whereas the last two are related to load and
deflections. The sensitivity of the contact pattern to load will be directly related to the ratio of
cutter diameter to crownwheel diameter, in which case only three items remain to be described.
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Further investigations may be necessary however, where the gear curvature factor of
ANSI/AGMA and Gleason may serve as a starting point. As this issue is not a basic subject of
this thesis, therefore no actual proposal will be given here. At the end of chapter 4 however, an
indication will be given in what way the influence of the gear curvature may be incorporated in
future calculations.

2.8.4 Size Factor

Although there is little difference in the values of the Size Factors, there is one important remark
to be made. In the DIN standard, the Size Factor appears at the Material dependent Factors. The
US standards apply this Size Factor in the expressions for the calculated tooth root stress. The
reason for doing so is more of a practical kind, by which SN-diagrams may be prepared for a
wide range of tooth sizes, as is indicated in chapter 9 of the ANSI/AGMA standard.
Comparing a calculated stress according to ANSI/AGMA or Gleason with the DIN output, will
always imply a difference of 15 to 30%, apart from the other numerical differences. It is simply
a result of the different positions of the Size Factor.

When the position of the size factor is always kept at the Material Factors, the differences in
tooth root according to the different standards will become smaller. It will have, however, no
influence on the comparison of the safety factors.

* Two representative rear axle gears have been calculated according to the *
* different standards. The values for the individual factors have been compared. *
* It shows that there are relatively large differences between the Face Load *
* Distribution Factor, the Tooth Form Factor, the Gear Curvature Factor and the o
* Size Factor. *
* The differences in the Tooth Form Factors are a direct result of the assumptions *
* in the principal stress and the length of the bending arm. *
* The Size Factor may be moved to the Material Factors. *
* The reason for the influence of the Gear Curvature Factor has been explained. *
* At a fixed tooth loading position, there is hardly any influence of gear curvature. *
* The sensitivity of contact pattern change is directly influenced by gear curvature, *
* therefore it will have an influence on stress at assembled gearsets. *
* Here an expression is required for the change in contact pattern sensitivity in *
* function of the ratio cutter radius / crownwheel radius. *
* For the Face Load Distribution, the assumed elliptical load distribution over the *
* facewidth may be the cause for the multiplication factor of 1.50. *
* For straddle mounted pinions, the Face Load Distribution Factor may become *

* 1.30 and this value is independent of the load.
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2.9 Resumee

Four standards for tooth root stress calculations have been compared.

All calculation standards apply virtual helical gears to substitute the actual bevel gears for
geometry and stress calculations. All standards use virtual helical gears, although in some
standards the use of virtual geometry is not explicitely indicated.

The ANSI/AGMA and Gleason standards have different ways of designating tooth proportions
of the basic gear geometry than the DIN and Oerlikon methods. Special expressions have been
developed to calculate tooh proportions in the middie of the facewidth from gears with constant
teeth height to gears with tapered teeth height.

There are hardly any differences in the tooth proportions at the mean face width of all four
standards, for comparable gear geometries. In the direction of the outer or the inner cone
distance however, the differences between the tooth proportions increase, being the result of a
tapered or a constant height tooth depth.

The individual profile and face contact ratio, calculated according to the different standards,
hardly have any differences in numerical values for a given gear geometry. Between the total and
the modified contact ratio, however, there are relatively large differences. At an effective face
width of 85% of the geometrical face width, as recomended in the DIN standard, the difference
between the modified and total contact ratio is 15 to 30%. Generally the modified contact ratio
gives smaller values than the total contact ratio. This is mainly a result of the different definitions.

The tooth root stress calculations for all considered standards are based on the normal section
in the middle of the face width. The basic set-up of tooth root stress calculations in the different
standards is principally the same, although the originally equations do not give that expression.
They all can and have been rewritten into one and the same uniform equation, by which all
individual Load, Geometry and Material Factors are grouped in a uniform way. Then it becomes
clear that the expressions for tooth root stress in fact are all comparable. The number of
features, taken into account by the standards, differ however.

A calculation example on two hypothetical and for automotive use representative gear sets, has
been performed in order to identify the specific and individual differences between the standards.

The Face Load Distribution Factor gives differences that may amount to 60%, depending on the
value of the output torque and the considered standards.

Of the Geometry factors, the Tooth Form Factor differs the most. The ratio of the highest and
the lowest Tooth Form Factor may attain a value of 2.0 to 2.5.

These differences are caused by the length of the bending lever arm and the different principal
stresses that are taken into consideration for the calculated bending stress at the root.

The Load Sharing Factor also leads to significantly differences between the standards.

The Gear Curvature Factor also causes a difference in calculated stress values, as it is used in
both US standards, whereas it is not applied in both European standards.

The tooth root stress, solely based on the geometry factors, gives for DIN values that are a factor
1.25 to 1.85 larger than the stress according to ANSI/AGMA and Gleason. The stress according
to Oerlikon lies in between. When the load factors are taken into consideration, the differences
will decrease, but this is very much dependent on the torque level, as the face load distribution
factor of ANSI/AGMA is strongly dependent on torque. The material factors differ almost only in
the value of the allowable stress. These allowable material values have differences up to a factor
of 2, when comparable failure probabilities are considered.
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The Safety Factors, as calculated by the different standards, give a smaller difference than the
root stresses, although a ratio of 1.0 to 1.5 between the most extreme values may occur.
Generally, the tooth root stress of automotive rear axle gears, calculated according to DIN is
larger than the one calculated according to ANSI/AGMA.

It is very clear that the allowable stress values and the calculated root stress should always be
linked to one another within the same calculation standard. In this way one is likely to obtain
safety values that can be considered as being reliable.

There is hardly any difference in quality between the considered calculation standards. The US
based standards have the largest number of influences taken into account in different factors.
In general the same global gear dimensions can be expected for a given application, when using
the different standards. The different preferences on specific gear geometries for the designer
will be more dominant on the final gear geometry than the influence of the calculation method.
Different optimal geometry data can be expected however for one and the same gear, when
calculated according to different standards. This is mainly the result of different sensitivities of
tooth root stress for gear geometry variables.

It is proposed to use a Face Load Distribution Factor of 1.30 for automotive rear axle gears that
are straddle mounted and have normal deflection values. This Face Load Distribution Factor is
considered to be independent on the gear load and therefore it's value is constant.

The load distribution over the gear facewidth here is assumed to be flattened than a pure
elliptical load distribution is.

The gear curvature will play a role in the tooth root stress. As measurements on gear teeth
models with fixed load positions have shown hardly any influence on measured root stress, the
curvature of the gear teeth will hardly influence the root stress. The gear curvature does however
have quite a large influence on the sensitivity of the contact pattern shift under load, when built
in a rear axle casing. The effect of cutter radius on endurance life has been shown by tests.
The ratio of the cutter-to-geardiameter here is the determining element. The effect of gear
curvature on root stress should therefore be included in the stress calculations. It will be
proposed lateron to incorporate the gear curvature in the Contact Pattern Factor.
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3 TOOTH ROOT STRESS CALCULATIONS OF HYPOID GEARS

3.1 Introduction

For hypoid gears no official standards are available when calculating gear geometry and strength.
Here only specific calculation methods exist that have been introduced by companies that apply
these gears on a large scale or by the companies that produce the manufacturing machines for
hypoids. Primarely the three world manufacturing systems for bevel and hypoid gears, Gleason,
Oerlikon and Klingelnberg have developed standards for hypoid gear calculations [3.3] to [3.6].

Since the beginning of the application of hypoid gears, the emphasis of the gear manufacturers
has been on understanding the geometry and aspects of the gear strength; the latter in
comparison to bevel gears. In automotive applications hypoid gears are used during a relatively
long time and on a large scale. The first hypoid gear equipped car was introduced in the mid
twenties of last century [3.1]. It took about ten years before machinery and manufacturing
methods as well as basic understanding of hypoid gears were at a level that succesfully
application of hypoid gears was possible [3.2]. Apart from that, there are also specific industrial
applications where hypoid gears are employed.

The most dominant aspect of hypoid gear geometry is the hypoid offset. The amount of this
offset determines to a large extent most of the hypoid gears characteristics in general. It appears
that the geometry and stress calculations for hypoid gears can be systemised on a similar way
as for bevel gears. First, the actual hypoid gears are substituted by virtual bevel gears. Secondly,
these virtual bevel gears are then substituted by virtual helical gears and these are replaced by
spur gears (fig. 3.1). In fact this is an extension of the procedure that is described in chapter 2.

HYPOID GEARSI BEVEL GEARSJ' HELICAL GEAR?' SPUR GEARS

=1 {VIRTUAL) 3 {VIRTUAL) 2 (VIRTUAL) !

Fig. 3.1 Simplification of Hypoid Gear Geometry by Virtual Gears

First, some consequences of hypoid offset will be discussed. Then the different geometry and
the strength calculations will be analysed and compared in the following parts of this chapter.
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3.2 Hypoid Offset and it’s Consequences

The most important aspect of hypoid gears is the hypoid offset as it determines the hypoid gear
characteristics. The following general consequences of hypoid offset can be given, where the
geometrical, the kinematical and the axle lay-out characteristics are considered.

Principally there are four different possibilities for a hypoid offset; they may result in an increase
or even a decrease of the pinion dimensions. Important in this aspect are the direction of the
crownwheel spiral angle and the direction of the offset. Here, only the hypoid offset that leads
to an increase of the pinion diameter will be regarded, as this option is mostly used.

Geometrical consequences.

* The pinion spiral angle increases (when the gear spiral angle remains constant).

* The pinion outer diameter increases.

* The pinion face width increases.

* The face and cone angles of pinion/crownwheel change.

The tooth profile becomes asymetric, leading to different pressure angles on both flanks.
As a result of this, the pinion shaft and the pinion top may increase to a larger dimension and
hereby strengthening and stiffening the pinion shank as well as giving the possibility for mounting
relatively large pinion bearings. Also the mounting of a pinion top bearing is possible so as to
admit a straddle mounted pinion. The increase of the pinion diameter resuits from the increase
of the pinion mean spiral angle that increases the tangential modulus, as in the case of
increasing helix angle at helical gears. The mean normal modulus remains unchanged.

*

Kinematical consequences.

* Both profile contact ratio and face contact ratio increase.

* Relative sliding in lengthwise direction occurs.

The latter is positive in terms of strength, noise production and lapping characteristics. It is well
accepted that hypoid gears have a higher loadability and that they are more silent than bevel
gears with comparable gear geometry. As a result of the additional sliding, hypoid gears do not
have the risk of destroying the contact pattern when the lapping operation takes too long.

A negative aspect is the higher risk of scoring as a result of large relative sliding. This sets higher
requirements for the lubricating oil; generally for hypoid gears a GL5 oil is required whereas for
bevel gears a GL4 quality is sufficient. Also the stationary oiltemperature may be higher than for
bevel gears with comparable geometry, loading and casing.

Axle Lay-out consequences.

* The position of the pinion lowers in vertical direction.

* The axial mounting distance of the pinion decreases.

The axial loads on bearings increase.

* Larger pinion deflections; axially and horizontally.

* Sensitivity for built-in deviations decreases.

As the amount of hypoid offset has a large influence on the general axle lay-out, it's value always
needs to be checked for several limitations and restrictions.

*
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In order to characterise hypoid gears, the relative offset is mostly used. This is the ratio of the
vertical hypoid offset, relative to the crownwheel outer diameter. Fig. 3.2 gives in a graphical way
the relative hypoid offset plotted against the crownwheel outer diameter for some rear axles. In
this graph, normally available data of several axle manufacturers [6.2] are represented.

One may roughly distinguish two different area's for the relative hypoid offset:

a
—k -012+020 for d,<230mm (3.1)
e2
a
ai =0.05+0.12 for d_,>230mm (3.2)
e2

In the range of 180 - 500 mm crownwheel diameter, the absolute value of the pinion offset lies
between 25 and 40 mm. The large variation in the amount of relative offset, ranging from 5% to
almost 20%, is an indication for the variaty of reasons for choosing a relative hypoid offset.
Requirements for noise production, lay-out or manufacturing reasons, even historical experience
of a manufacturer may be the reason for applying a certain relative hypoid offset.
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3.3 Geometry Calculations

For the calculation of hypoid gear geometry, there are no official standards like ANSI/AGMA or
DIN. Here the only analytical calculation methods have been developed by the three
manufacturers of bevel and hypoid gear generators, Klingelnberg, Oerlikon and Gleason. Apart
from these, Winter has published some design directives [2.5]. In correspondence to chapter
2, the calculation methods according to Gleason, Oerlikon and Winter will be briefly analysed.
The major criterium of the geometry calculations is the selection of the virtual bevel gears that
are to substitute the actual hypoid gears. All methods use this construction of virtual bevel gears.
There is however a large difference between the individual methods, in which the geometry of
the actual hypoid gears is substituted into the geometry of the virtual bevel gears. This is mainly
determined by the spiral angle and the facewidth that is used for the virtual bevel gears.

Oerlikon
The virtual bevel gears here obtain both the spiral angle and facewidth of the hypoid pinion. The
geometry of the virtual bevel gears is determined by the hypoid pinion.

Gleason
The mean spiral angle of the virtual bevel gears is the mathematical mean value of both spiral
angles of the hypoid pinion and gear. The facewidth is the same as for the hypoid crownwheel.

Winter
Here, the facewidth and spiral angle of the gear here determine the virtual bevel gears.
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Although in all methods a virtual bevel gear geometry is choosen, based on the actual hypoid
gears, there are substantial differences between the several standards in the geometry of the
virtual bevel gears that substitute the actual hypoid gears.

The most important factors of the virtual bevel gear geometry, namely the representative spiral
angle and face width, have their influence on the calculated face contact ratio and the strength.
The influence of hypoid offset on gear geometry is the strongest taken into account by the
Oerlikon method, where both the larger facewidth and the larger mean spiral angle of the pinion
lead to relatively strong virtual bevel gears with a larger face contact ratio. The method according
to Winter selects the smaller facewidth and the smaller spiral angle of the gear. This implies the
smallest influence of hypoid offset for geometry and strength. The method of Gleason can be
considered as ranging in between both (figure 3.3).

Both calculation examples of chapter 2 are used here. Starting from the bevel gear at zero offset,
the pitch angles are calculated at increasing relative hypoid offsets of 5, 10, 15 and 20%. As can
be seen, the pinion pitch angles calculated according to Gleason are smaller than when
calculated according to Oerlikon. This implies that the diameter and the teeth number of the
virtual helical pinion for the Gleason method will be smaller than the one calculated according
to Oerlikon. For the method according to Winter, there is only minor influence of hypoid offset
on the pitch angles.
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Fig. 3.4 Profile and Face Contact Ratio at different Hypoid Offset for Ratio i=6.14

The influence of hypoid offset on the profile and face contact ratio, according to the calculations
of Oerlikon and Gleason has been determined for the ratio 6.14. The results are given in fig. 3.4
for three different design strategies:

* Constant pinion spiral angle.

* Constant crownwheel spiral angle.

* Constant sum of pinion and crownwheel spiral angle.
Here also, discrete points have been calculated at 5, 10, 15 and 20% relative hypoid offset. The
lines between the points have been drawn continuously for reasons of clarity.
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For bevel gears, at zero hypoid offset, the profile and the face contact ratio calculated according
to the different standards are all identical, as has been shown in chapter 3.

At an increasing hypoid offset, the profile contact ratio, calculated according to Oerlikon, remains
constant for a constant pinion spiral angle. This is the same for the Gleason calculations, when
the sum of spiral angles remains constant. The face contact ratio according to both standards
increases at increasing hypoid offset, mainly due to increasing facewidth. Calculated according
to Gleason, gives a more constant effect (fig. 3.4). These effects reflect the basis of the choice
for the virtual bevel gears substituting the hypoid gears.

3.4 Tooth Root Stress Calculations

In this part several calculation methods on tooth root stress of hypoid gears will be compared,
with special emphasis on the influence of hypoid offset.

First the calculation methods according to Gleason, Oerlikon and Winter will be compared.
Secondly, the resuits that can be derived from different investigations on hypoid gears will be
analysed and compared. The calculation method of Klingelnberg is not included here, because
the author had no possibilities available to perform stress calculations with this method.

3.4.1 Analytical Stress Calculations

In general there are three different strategies that can be used when applying a hypoid offset:

* Constant pinion spiral angle.

* Constant crownwheel spiral angle.

* Constant sum of pinion and gear spiral angle.
These three strategies have been applied for the calculation methods of Gleason, Oerlikon and
Winter. For the last method, the stress calculations according to DIN have been used to
determine the tooth root stress of the virtual bevel gears, that have been determined by the
method of Winter. Both axle ratio's of the calculation examples of chapter 2 have been
calculated, each with the above mentioned design strategies regarding the spiral angle. The
results of these calculations are summarised in fig.3.5 and 3.6.
It can be seen that the influence of hypoid offset on calculated tooth root stress is different for
the three calculation methods; even separate regions can be distinguished.

Calculations according to Winter show a relatively small influence of hypoid offset on tooth root
stress, whereas Oerlikon gives the largest influence. The Gleason results lie in between both
methods. This is comparable to the influence of the virtual bevel gear geometry.

It may be concluded that the three caiculation methods differ to a large extent, as the influence
of hypoid offset on the stress decrease is concerned. The calculated influence of hypoid offset
on the stress decrease according to the Oerlikon method, where in fact the mean spiral angle
and the facewidth of the pinion determine the geometry of the virtual bevel gears, is significantly
more than calculated according to Gleason and Winter. In the latter, the spiral angle and
facewidth of the crownwheel determine the geometry of the virtual bevel gears. In the method
according to Gleason, the geometry of the virtual bevel gears is determined by an average value
of the mean spiral angle of pinion and crownwheel. As a consequence, the difference in the
individual methods may therefore be considered to be very large.



64

3 Tooth Root Stress Calculations of Hypoid Gears

RATIO CALCULATED BENDING STRESS

1 HYPQID/ BEVEL (-]
1,0 T I
0,9 +—
0.8
0,7
06 b Calculated acc. fo:l__
! — Winter [2.5] I
— Gleason [3.3]
0.5 1-| - Oerlikon 12.20] —
- Rear axle ratio 331
~ Only pinion sftress
— Drive condition
— Fach range covers the options:
A 2 =constant
3, 1 =constant
5B =constant
| |
0 0,05 0,10 0,15 0,20

RELATIVE HYPOID OFFSET [-]

—

Fig. 3.5 Calculated Decrease of Tooth Root Stress at Hypoid Offset

' RATIO CALCULATED BENDING STRESS

HYPOID / BEVEL [~1
7,0 1 -.\}\‘]
0.9 +—
0,81
0,7 |
0.6 |- Calculated acc, fa:l___
! - Winter [2.5] ]
- Gleason [3.3] —
0.5 1-| - Oertikon [2.20] —
- Rear axle ratio 6.14
- Only pinion stress
- Drive condition
- Fach range covers the options:
iy 2 =constant
I'J‘m1 = constant
Z R =constant
! |
0 0,05 0,10 015 0,20

RELATIVE HYPOID OFFSET [-]

—

Fig. 3.6 Calculated Decrease of Tooth Root Stress at Hypoid Offset




3 Tooth Root Stress Calculations of Hypoid Gears 65

3.4.2 Other Investigations on Hypoid Offset

Several other investigations have been performed recently, in order to determine the influence
of hypoid offset on gear strength. Here only the results regarding the effect on tooth root stress
will be summarised and discussed.

Fresen [3.8] has performed endurance tests and damage investigations on hypoid gears. The
results made it difficult to clearly indicate what the influence of purely offset was on strength. A
very clearly fatigue breakage of the pinion teeth did hardly occur; there was a mix of failures on
both pinion and gear as well as some cases of pitting. The results of the endurance tests gave
the impression that an increasing hypoid offset would reduce the loadability of the gears which
can be regarded as contradictory to the general assumptions. It still remains difficult to separate
purely the influence of hypoid offset, because next to it also other geometry parameters have
been changed. It was however the first noticeable indication that a hypoid offset would not clearly
lead to an increase of load capacity. These conclusions are more or less in line with the
calculation method according to Niemann/Winter [2.5]. Here the influence of hypoid offset on
tooth root stress is more flattened out mathematically by the choice of the virtual bevel gears.

Vollhiter [3.10, 3.11, 3.12] performed life tests and strain measurements on bevel and hypoid
gears in order to establish the influence of hypoid offset. For the endurance tests the crownwheel
diameter was 170 mm and the values of relative offset were 0-15-18-26%. The results of both
tests and measurements showed that hypoid offset does reduce the tooth root stress at a given
torque. The type of failure on the endurance tests changed from tooth fatigue breakage to
surface fatigue failure at an increasing hypoid offset. The results of the endurance tests are
summarised in fig.3.7.
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Fig 3.7 Results of Investigations by Vollhuter [3.10]

The following remarks can be given on this work.

The teeth number of the crownwheel is 39. This leads to a relatively large module, meaning that
tooth breakage will not likely appear. To substract from these results fully the influence of hypoid
offset on tooth breakage is not clearly possible. A teeth number of 41 to 46 would be more in the
automotive range; than also the chance of tooth breakage would be higher due to the lower
modulus.
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The results of the endurance tests showed breakage at zero offset, while hardly any breakage
occurred when an offset was introduced. This is only a quantative indication that a hypoid offset
increases the tooth root strength; the endurance lifes for pitting only give the minimum increase
on tooth root strength.

The loading level of the endurance tests was about 60% of the maximum torque according to the
definition of chapter 6.2, based on the crownwheel outer diameter of 170 mm . This does not
directly provoke tooth breakage. A crownwheel output torque of about 2000-2500 Nm for these
tests would have been more appropriate in order to provoke more dominantly a root fatigue
breakage in all variants. The variants had, next to the hypoid offset, also other gear geometry
parameters changed, such as pressure angle, profile shift and tooth thickness correction. It
appears however that the strategy of constant sum of spiral angles has been used. Some of the
geometry changes are inevitably but the influence of hypoid offset is not purely to be separated
from these results.

The investigations of Vollhiter cover a range of 15-25% relative hypoid offset. The most
interesting range of relative hypoid offset for automotive rear axle gears however is 5-15%.
From the endurance tests, SN-curves were drawn on basis of a 50% failure probability, bearing
in mind that a mix of failures has occurred. Out of these curves it is possible to substract at least
the minimum change in tooth root bending stress that has occurred, since at any hypoid offset
hardly fatigue breakage occurred. For a given number of cycles, namely 2 x 10%, 5x10%°and 7
x 10° , a region of relative loadability can be derived, based on an assumed linear relation
between torque and bending stress. The relative tooth root stresses are then determined by the
ratio of attainable torques at the indicated numbers of cycles. There is then a linear relationship
assumed between root stress and torque. The strain measurements give stress values that can
directly be related to relative stress decrease as a result of hypoid offset (see fig. 3.10).
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Fig. 3.8 Results of Numerical Calculations [3.14]

Theoretical investigations have also been performed on the influence of hypoid offset. This
implies numerical calculations with the computerprogram "Kegelradkette", that was originally
developed at the University of Aachen [3.13].

Stadtfeld [3.14, 3.15] performed series of calculations with one of the first versions of this
program. The conclusion of his work with regard to hypoid offset was that there is a large
difference between the three different stategies for spiral angles (figure 3.8).
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At a constant crownwheel spiral angle, the tooth root stress on the crownwheel remains almost
constant when the hypoid offset increases. The tooth root stress for the pinion decreases for
hypoid offsets up to 10%. At larger offsets a very unusual pinion tooth form is produced because
of the large pinion spiral angle. At a constant pinion spiral angle, the unfavourable contact pattern
and crownwheel geometry leads to flat contact lines. This increases the root stress at both pinion
and crownwheel at increasing hypoid offset. At a constant sum of spiral angles, the root stress
on the gear remains more or less constant. The root stress at the pinion decreases until an offset
of about 12%, caused by the increasing pinion diameter. At larger offsets there was an increase
of root stress on the pinion.

Schweicher [3.16] made some specific investigations purely on the influence of hypoid offset with
later versions of the "Kegelradkette", where in principle the results of FEM-calculations were
considered. He calculated that in general the tooth root stress on the pinion decreases at
increasing hypoid offset, whereas the stress increases on the crownwheel. Only the amount of
stress change depends on the stategy for the spiral angles (fig. 3.9).
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Fig. 3.9 Results of Numerical Calculations [3.16]

He found that, when introducing a hypoid offset, there are two effects that explain for the change
in tooth stress. First there is the increasing pinion diameter and tooth thickness which decreases
the stress. Secondly there is the effect of the increasing screwform of the teeth by which the
contact pattern changes its form and the contactlines become shorter, which plays a role at large
offsets. Both effects act simultaneously and countereffective with different sensitivities,
depending on the spiral angle strategy and the gear geometry.

In a combined publication [3.17] of the FZG at Munich and the University of Aachen, a
comparison has been made between theoretical calculated and experimental established stress
changes at increasing hypoid offset. The calculations and measurements for the crownwheel
correlated very well, but there was still a large difference for the pinion.
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According to the authors, a more refined meshing of the pinion model is required in order to
minimise the difference between measured and calculated root stress. From this conclusion one
might get the impression that the results of the strain measurements, also the tendency with

offset, may be regarded as fairly reliable.

3.5 Summary of Results on Hypoid Offset

From the investigations that have been discussed here, a summarising graph has been derived
on the stress decrease resulting from hypoid offset. For this, the results of all different
investigations have been analysed and compared. This diagram is given in figure 3.10, where
the stress decrease for the pinion tooth root is given when loaded in the Drive Side at increasing
hypoid offset. There it can be seen that in specific area's the theoretical derived values of some
investigations coincide reasonably well with experimental findings of other investigations.
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Fig. 3.10 Summary of Results from Different Investigations,
as has been established by analysing the results

For hypoid offset larger than 15% and the stategy of constant sum of spiral angles, the
theoretical calculations of Schweicher and the endurance testst of Vollhuter coincide even very
well. Considering the fact that the values from the endurance tests only represent a minimum
stress decrease, it seems that the theoretical calculations indicate a relatively mild influence of
the hypoid offset to tooth root stress reduction.

A further conclusion that may be drawn, is that in general the pinion tooth root stress decreases
at an increasing hypoid offset. The rate is about 10% stress decrease at 15% relative hypoid
offset. At a 20% relative offset, the stress decrease is a mere 20%. It may well be possible to
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assume a more or less straight line between these points. The root stress change for the
crownwheel is different from this, although it is not given in the graph. Figure 3.10 can directly
be compared with figures 3.5 and 3.6.

They are combined in figure 3.11, where the following conclusions may be drawn:

* The influence of hypoid offset on the tooth root stress, calculated analytically according to
Oerlikon and Gleason is larger than the different investigations. A factor 2.5 - 3 larger stress
decrease is calculated here than the investigations show.

* The calculations according to Winter coincide very well with the latest findings, at least for
hypoid offset smaller than 10%. For offsets larger than 12%, the difference increases although
it is always smaller than the Oerlikon or Gleason based calculations.

* The virtual bevel gear geometry according to the procedure of Winter may be considered as
being very realistic in this respect up to a relative hypoid offset of 10-15%. The limitation is that
it is valid for a gear ratio of about 3 - 3.5 and a constant sum of spiral angles strategy.

* For hypoid offsets larger than 15%, the stress decrease seems to become more sensitive for
offset, as the slope is larger.
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Fig. 3.11 Proposal for Stress Reduction by Hypoid Offset

According to this, a proposal may be derived to determine the effect of hypoid offset on tooth root
stress for the Drive Side of the pinion, as indicated by figure 3.11.

Another aspect is that for a respective stress decrease, a far larger hypoid pinion offset is
required than is commonly used in automotive applications. The greater part of automotive
applications use a relative hypoid offset of 5-15%, whereas only from 15-20% offset a substantial
decrease in pinion tooth root stress can be expected, as indicated by the diagram of fig. 3.10.
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3.6 Resumee

For tooth root stress calculations of hypoid gears, a comparison has been made on several
standards that are used by gear machine manufacturers.

In all considered standards, the geometry of hypoid gears is described by virtual bevel gears that
substitute the hypoid gears. This principle is identical to the geometry calculation of bevel gears,
which are substituted by virtual helical gears.

There are different ways of calculating the geometry of the virtual bevel gears for the given
hypoid gears. The main differences are determined by the assumption of the spiral angle and the
face width of the virtual bevel gears.

The mean spiral angle and the facewidth of the pinion both form the basis for the virtual bevel
gears according to Oerlikon. The method according to Winter uses the mean spiral angle and
the facewidth of the crownwheel as the basis for the virtual bevel gears. The virtual bevel gear
geometry according to Gleason uses the crownwheel facewidth and the average of the sum of
the mean spiral angles for pinion and crownwheel.

Analytical calculations on the pinion tooth root stress according to Gleason, Oerlikon and Winter
have been performed for the calculation examples of chapter 3. The root stress was calculated
as a function of the hypoid offset. Three different strategies for the spiral angles have been used.
All standards calculated a decreasing tooth root stress at an increasing hypoid offset.
Generally the influence calculated by Oerlikon is much larger than the one according to Winter,
Gleason here takes an intermediate position.

Other investigations, based on FEM-calculations and practical measurements of endurance life
and tooth root strain have also indicated a decrease of tooth root stress at increasing hypoid
offset.

For hypoid offsets larger than 15% of the crownwheel outer diameter and a constant sum of
spiral angles, there is a good correlation between the theoretical calculated and experimental
determined decrease of tooth root stress. Only the FEM calculations show a milder decrease for
the root stress than experiments indicate.

If the results of these investigations are compared to the stress calculations of Oerlikon, Gleason
and Winter, a relatively large difference is obtained between the Oerlikon and the Gleason
methods on one hand and experimental findings on the other hand.

The stress decrease according to Oerlikon and Gleason is about 2.5 - 3 times larger than the
experimental findings.

The difference between the Winter method and the investigations is very small.

Therefore it is concluded that the procedure for calculating the pinion gear geometry and the
tooth root stress of hypoid gears according to Winter gives the best description of the influence
of hypoid offset on tooth root stress of hypoid pinions.

For the pinion tooth root stress, a reduction of 10% on tooth root stress at a 10% relative hypoid
offset may be expected for a constant sum of spiral angles. For a constant spiral angle of the
crownwheel, a larger relative hypoid offset of 15% is required for the same reduction of 10% in
tooth root stress. At larger hypoid offsets, the decrease in tooth root stress is higher.
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4 ENDURANCE TESTS ON HYPOID GEARS

4.1 introduction

In automotive industry, at least for gear drives in rear axles, the determination of tooth root
stresses at static loading with the required safety factor is one aspect. The other, in fact even
more important issue for automotive rear axle drive gears, is the endurance life of the rear axle
gears, depending on the vehicle application. The accompanying failure probability also is
important if a large number of vehicles is manufactured with a very wide variation in application
and different driveline loading. A 44 tonne vehicle used for long distance haulage will run in its
technical lifespan about 800.000 - 1.000.000 km or even more, with the greater part of the
loading conditions to be characterised by a constant and relatively low torque at high speed. On
the other side of the vehicle range, a distribution vehicle for mainly inner city or even inter urban
traffic, will travel about 300.000 km in its life, where the amount of relatively high torques and low
speeds will prevail. This will have a large influence on the expected service life for the rear axle
gears.

Dimensioning automotive rear axle gear drives, based on the life expectancy, therefore is at least
equally relevant as designing on a specific safety factor as is the case with international
standards such as ANSI/AGMA, DIN and ISO. In order to predict the life expectancy of a rear
axle gear for a given vehicle application, a practical endurance calculation method should be
available, that has been verified with actual gear endurance life tests.

This method for dimensioning rear axle gears normally contains the following items:

* A calculation method for tooth root stress when geometry and applied torque are known.

* Allowable endurance strength values and data on the fatigue characteristics of the gears.

* Life data of endurance tests on rear axle gears.

Apart from this, additional knowledge is necessary on those factors in the stress calculations,
that up to now give a considerable difference in values, when the different calculation standards
are compared. This means that especially for rear axle gears, the Face Load Distribution Factor
and the Application Factor will have to be detemined.

In order to obtain actual gear endurance life data, test rig fatigue life tests have been performed
on rear axle gears at a constant amplitude loading. The gears have been operated under
conditions that are close to vehicle conditions. This means that they are assembled in the actual
rear axle casing, where actual deflections are likely to occur. The results of these tests are
analysed statistically, in order to determine their failure probability. These registered endurance
test results are then compared with the calculated gear life expectancy. Both calculations and
test results are then fitted by adapting the calculations of root stress and service life,.
Depending on the difference between both, some adaptions will be made on the calculations in
order to match calculated and measured life. Special care has to be taken to ensure that the
correlation factors that are introduced to numerically fit the test and the calculation results, these
corrections are to be physically correct. In this way, a practical method is then derived to
determine new rear axle gear designs in similar applications.
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4.2 Results of Constant Amplitude Endurance Tests

Life tests on a rear axle test rig have been performed on four different types of truck rear axles,
that are designed for 11 and 13 tonne axle load. The vehicle weight varies from 30 to 45 tonne.
The rear axles are equipped with different rear axle gears in terms of ratio and gear geometry.
In order to distinguish the different types, they will be referred to by the gear outerdiameter. For
each of the four different axle types, several ratios have been tested. For each ratio several
gears have been used on the endurance life tests. The tests have been performed on complete
rear axles, in order to incorporate realistic built in situations such as pinion and gear deflections
under load.

All tests have had a constant amplitude loading of the gears; both the output torque and input
speed were kept at a constant level. From these endurance tests, specific data are obtained on
the actual fatigue characteristics of the complete assembled gear sets.

4.2.1 Geometry of the Tested Rear Axle Hypoid Gears
General data of the gears in terms of crownwheel outerdiameter, gearing type and axle ratio, are

given in table 4.1. All rear axle gears are hypoid gears with one and the same absolute value of
hypoid offset of 41 mm. This means that the relative hypoid ranges from 8-10%.

Crownwheel Gearing Axle Number of
Outerdiameter type ratio's Testsamples
[mm] -] [-] -]

485 Oerlikon 2.93-5.63 22
445 Oerlikon 2.93-5.63 28
425 Gleason 3.31-6.14 19
410 Oerlikon 3.31-5.63 17

Table 4.1 General Data of Tested Rear Axle Hypoid Gears

5.13
8/41

5.63
8/45

6.14
7/43

3.73
11/41

4.10
10/41

4.56
9/41

Axle Ratio 2.93

14/41

3.31
13/43

Teeth Numbers

Table 4.2 Teeth Numbers and Rear Axle Ratio's

The tested rear axle gears with different diameters have identical teeth numbers and ratio's. The
teeth numbers of both pinion and crownwheel as well as the gear ratio's are given in table 4.2.
The axle with 410 mm crownwheel diameter was an experimental one; it was not released for
production. The other three rear axle gear types are in production since the late eighties and still
operate without any problems. The most important geometrical data are given here in terms of
the gear outerdiameter, the mean normal module, the gear mean spiral angle, the gear facewidth
and the cutterradius, which are given in table 4.3.
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Crownwheel Mean Normal Spiral Face Cutter
Outerdiameter Module angle width radius
[mm] [mm] [°] [mm] [mm]
485 8.2-8.6 32-35 75 140
445 7.3-7.6 34-38 65 140
425 70-7.7 29-32 60 6"
410 6.9-7.1 33-36 60 140

Table 4.3 Most important General Geometrical Data of Tested Rear Axle Gears

All gears have basic geometric characteristics resembling current state of the art and are
representative for nowadays truck rear axle design. Several geometry data are in line with
Gleason and Oerlikon recommendations and guidelines. These include:

* profile shift for preventing undercut on the pinion,

* tooth thickness correction for equal life,

* standard pressure angle of 22.5°,

* standard pressure angle correction between Drive and Coast sides,

* standard helical crowning,

* cutter geometry according to general recommendations,

* non generated teeth on the crownwheel (Gleason Formate and Oerlikon Spirac).

The gears have been manufactured with normal state of the art manufacturing methods and
normal production installations, that are commonly used in the automotive industry for large scale
production. Soft machining of the gears takes place on Oerlikon and Gleason bevel and hypoid
gear cutting machines. Pinions and crownwheels are both case carburised in large volume
production heat treatment furnaces with state of the art control systems for the carburising
process. After carburising, the pinions are direct hardened; the crownwheels are heated to
austenite temperature and then hardened under a quenching press. Finally both members are
lapped on Oerlikon and Gleason lapping machines according to standard procedures. The
general gear quality is according to standard gear production techniques and may be regarded
to be representative for normal truck applications.

The material for the pinion and the crownwheel is a case-carburising steel, as normally in
automotive rear axle gears. In this case 23CrMoBS3.3, W.St.Nr 1.123.456 is used. The most
important characteristics of the chemical composition are 0.20-0.25% Carbon, 0.70-0.90%
Manganese, 0.70-0.90% Chromium, 0.30-0.40% Molybdenum and a small fraction of Boron for
increased hardenability.

The gearsets of each axle type that has been tested, were produced within a limited time period
of half a year maximum. The testresults of the gears with crownwheeldiameter 445 mm covers
a longer timespan; some of the gears were tested three years after the first tests. This means
that the variation in different material and heat treatment batches covers a limited time peroid.
Over a longer period however, the variation of material and production related endurance
characteristics will not significantly increase due to strict quality requirements and control of the
manufacturing and heat treatment processes.
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4.2.2 Test Rig and Test Conditions

The test rig is a so called open type. It consists of three electric motors, one for driving and two
for loading the axle; each motor is equipped with gear boxes to cover a given range of speeds
and torques. With the electronic control system, several vehicle conditions such as Drive and
Coast loading of the axle gears can be simulated. The maximum attainable power output
amounts to 350 kW. A view of the test rig is given in fig.4.1 on the next page.

During the endurance tests, a mineral oil of API-GL5 quality and a viscosity range of 86W140 is
used. This is a standard oil that is normally used for these types of rear axles. Normal splash oil
bath lubrication is used in the rear axle.

During the tests, the oil was maintained at a constant temperature of about 80° - 90°C by means
of a closed loop cooling system. This oil temperature corresponds to stationary vehicle conditions
as has been measured on Long Distance Haulage operations.

During each test, the torque and the rotational speed were kept at a constant level as these were
constant amplitude tests. Most of the test have been performed at the “Maximum Torque”, of
which the definition in relation to the crownwheeldiameter is given in chapter 6.2.1. A smaller part
of the tests were performed at about 50% of this value; the rest of the tests have been conducted
at a torque level that is in between both levels.

Several loading conditions and the number of test samples used during the tests are given in
Table 4.4. The crownwheel output torques of 47 kNm for the axle with 485 mm outerdiameter,
39 kNm for the 445 mm diameter and 32 kNm for both axles with 425 and 410 mm correspond
to the term “Maximum Torque”.

In the first place a relatively large variation in stress level is thus obtained, in order to minimise
the error at determining the slope of the SN-curve. Secondly the tests at haif the maximum
torque level give a possibility for establishing the endurande limit value for the gears. The failure
criterium of all tests was a reproducable and constant automatic shut down of the test rig when
the measuring equipment registered a variation on the input torque that exceeded +/- 5% of the
actual torque value.

Crownwheel diameter Output Torque Input Speed Testsamples
[mm] [Nm] [rpm] [-]
485 47.000 242 11
23.500 605 7
445 39.000 242 16
19.500 605 8
425 32.000 242 11
16.000 605 7
410 32.000 242 11
16.000 605 14

Table 4.4. Test Conditions of Endurance Life Tests
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4.2.3 Results of Constant Amplitude Tests

At the maximum torque level, the type of failure practically always was very clearly fatigue
breakage of the pinion tooth root. The reason for this is threefold:

1. The relatively high stress level on the gears promotes tooth root fatigue breakage.

2. A very constant and reproducable loading level during the entire course of the tests.

3. A uniform and identical stopping criterium for all tests.

On all tests, the pinions failed. The registered endurance life values are therefore determined by
the pinions. The only difference between several results was the number of teeth on the pinion
that had been broken or the severeness of the broken parts. In some cases not only the teeth
had been broken; also a relatively large part of the pinion cone shaped body was broken. The
influence of this aspect on the endurance life evaluation has not been taken into account, as it
is considered to be a consequence damage resulting from the original tooth breakage. On some
occasions also parts of some crownwheel teeth had been broken. As these were beleived to be
the result of broken pinion teeth coming entrapped in the gear mesh, they were considered to
be a consequence damage that does not influence the result of the endurance tests.

Most of the tests that were performed at half the maximum torque level, were stopped after
about 3x107 revolutions when the stopping criterium of variation in torque had not come into
action. In that case, mostly a slight form of surface pitting could be observed. Only in some cases
there was a fatigue breakage of pinion teeth at which the test was automatically stopped. The
results of these tests have been used in order to determine the endurance strength for the tested
gears.

4.2.3.1 Statistical Analysis of Endurance Results

The results of the four different series of endurance tests have been statistically analysed. The
statistical life results at one torque level, namely the maximum output torque, have been
determined for 10%, 50% and 90% cumulative failure probability, assuming a 2-parameter
Weibull and a Lognormai distribution. Table 4.5 gives the statistical results for a 2-parameter
Weibull distribution and table 4.6 gives the results for an assumed Lognormal failure distribution.

Crownwheel | N (f.p.=10%) | N (f.p.=50%) | N (.p.=90%) |  Ratio
Outerdiameter x 10° x10° x 10° N90 / N10
[mm] (-] -] [-] [-]

485 1.65 2.53 3.70 2.4

445 0.77 1.09 1.49 1.9

425 1.21 1.93 2.75 2.3

410 0.72 1.12 1.57 2.2
Table 4.5

Registered Number of Pinion Load Cycles at Maximum Torque for Failure Probability
of 10, 50 and 90% when 2-parameter Weibull Failure Probability Distribution is assumed
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Crownwheel | N (f.p.=10%) | N (f.p.=50%) | N (f.p.=90%) | Ratio
Outerdiameter x 10° x 10° x 10°% N90 / N10
[mm] [-] -] [-] [-]

485 1.56 2.67 4.47 2.8

445 0.80 1.09 1.52 1.9

425 1.32 1.99 3.03 2.3

410 0.78 1.19 1.79 2.3
Table 4.6

Registered Number of Pinion Load Cycles at Maximum Torque for Failure Probability
of 10, 50 and 90% when a Lognormal Failure Probability Distribution is assumed

t CUMULATIVE
FAILURE PROBABILITY [% 1]
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789705 2 3 4 56789105
PINION LOADCYCLES [-] —
Fig. 4.2 Lognormal Representation of Test Results at Maximum Torque
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In fig. 4.2 the testresults are plotted for an assumed Lognormal failure distribution.

The endurance results of the four different types show very clearly statistical differences,
although the difference between the axle types with 445 mm and 410 mm diameters is very
small, as the calculated tooth root stress of both types only differs little. Variation in endurance
life between the 10% and the 90% failure probability ranges from 2 to 3 for the tested axle gears.
This is a realistic value in view of the limited number of test samples and the limited number of
material charges and different heat treatment batches. It is comparable to the results of other
investigations, as indicated by [4.2] to [4.5], [4.7] and [4.11]. Based on the ratio of endurance lifes
at 90% and 10% failure probability, the results of the rear axle endurance tests may be
considered to be reliable.

Only the axle type 445 covers a larger variation in material and heat treatment batches over a
longer time period of about three years. Still the results of these gearsets fit very well in the
statistical analysis without any noticeable increase of the ratio N(S0)/N(10). Therefore it is
concluded that the variation of all tests can be regarded as being representative for a production
time of three years. The variation in life over a longer period will hardly be larger than in this case
because the variation in material and heat treatment properties will not be significantly higher.
The difference however is expected to be not very large. High stress levels generally lead to a
small variation in endurance lifes. At lower stress levels, the variation in fatigue life will increase.

4.2.3.2 Crack Investigations

Crack investigations have been performed on some of the tested rear axle gears. On some teeth,
cuts have been made of the normal tooth section and the following was investigated:

* crack initiation and propagation at the tooth root in the tooth normal section

* crack propagation in direction of the face width.
Figure 4.3 gives some of the most representative and first visible cracks in the tooth root.

Fig. 4.3 Crack Initiation in the Middle-to-Toeside of the Facewidth
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Figure 4.4 gives two examples of these cuts in the normal tooth section. On almost all pinions
that have been investigated, the position of the crack initiation in the root and the direction of the
crack propagation was similar to those shown in fig. 4.4.

Fig. 4.4 Examples of Cracks in the Normal Section at the Middle of the Facewidth

The angle of the first section of the crack, which is supposed to be initiated at the outer surface
of the tooth root, has been determined. This has been done by measuring the inclination of the
crack at the outer surface to the tooth centre line in the normal section, as indicated by figure 4.5.
As for this the test pinions had to be grinded into pieces, therefore the inclination angle has been
measured only on a limited number of test samples.

D

30 - TANGENT

Pitch circle

End of fillet

~Root circle

CRACK INITIATION
AT 40-55

Fig. 4.5 Angle of Crack initiation at Tooth Root in Normal Section
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The results of measurements on the angle of crack initiation are summarised in figure 4.6. There
it can be seen that there is hardly any influence of gear ratio and gear type. The measured angle
of crack origination at the tooth root in the middle of the face width ranges from 40 degrees
minimum to 55 degrees maximum. Now it may be assumed that at that point, also the maximum
stress would have occurred. This perception does not coincide with the general accepted 30°-
tangent; the angle is significantly higher than 30°. In fact it appears to come more in the range
of the intersect of the Lewis-parabola.

The difference with the 30° -tangent is not so surprisingly. In other publications of measurements
on tooth root stress, similar results have been found. Therefore it can be concluded that in this
aspect, hypoid gears do not differ from other gear types. This is valid for all the tested gear types.
The actual value of the angle of maximum root stress may vary according to the gear geometry,
but in general it differs from the assumed 30°-tangent. This difference is acceptable because of
the fact that the assumptions and the modelling the gear teeth as a cantilever beam, and only
taking into account the tensile stress or a sum of different principal stresses, is also tantamount
to some criticism. Like other publications, this will not be taken into account for the stress
calculations.

The 30%tangent is a generally accepted convention that makes it easy to calculate the tooth form
factor. It seems, however, that the position of crack origination corresponds more to the
assumption of the Lewis parabola for the critical root thickness.
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Fig. 4.6 Measured Angle of Crack Initiation at the Middle of the Facewidth

The crack propagation in the normal tooth section has further been studied. After being initiated
at the outer surface of the tooth root, the cracks grow inward into the direction of the pinion
centre line. This appeared to be the case on all pinions that have been investigated after the
tests. Therefore it is assumed that this type of crack propagation is representative for all tested
gears. This however differs from what normally can be observed at fatigue tooth breakage on
helical gears, where propagation of the crack mostly is directed to the other side of the tooth.

The more complex stress situation in the tooth root resulting from the tooth curvature on bevel
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and hypoid gears may well cause this effect. The forging texture of the material will possibly also
play a role in determining the direction of the crack propagation. As all investigated pinions have
a similar direction of the crack propagation, the influence of this on the life results has not been
taken into account here.

On most of the broken pinion teeth, the angle of the crack initiation at the tooth root changed
when proceeding in the lengthwise direction of the facewidth. Starting from the middle of the face
width to both ends of the tooth, the position of the crack at the root moved out of the tooth root
and upward towards the tooth tip. Investigating further the angle under which the crack proceeds
into the teeth, the following could be observed.

Towards toe side, the initiating angle decreased; at the face end at toe side it mostly was about
zero degrees, more or less horizontally. Towards heel side the angle however first increased and
then it decreased only a small amount in the last part of the face width. This seems to be an
indication that the concept of effective face width in the AGMA standard might play a role here.

On some occasions one could observe that only a part of the teeth had been broken. This
probably was a result of a shifting of the contact pattern over the face width towards toe side.
This effect did not indicate to lead to a smaller life; the crack origination always was in the middie
of the facewidth.

Fig. 4.7 “Steps” at the Cracks on the Root Surface

The cracks in the middle of the facewidth always show several "steps” which are normally
present in fatigue cracks at case hardened parts. They are a result of several small initiating
cracks at different places, growing in the lengthwise direction to meet each other. At these
positions, the "steps" occur. This was observed on the major part of the test pieces. This may
be the result of a relatively high stress level during the endurance tests, which promotes the
initiation of several cracks at different positions. The relatively low ductility of the case hardened
layer will also promote this. At lower stress levels, the number of different initiation locations
generally will be lower. This aspect is only refered to as an indication that the failure phenomena
correspond to fatigue failures. It does however have hardly any influence on the actual life.
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From this analysis, the follwing conclusions can be drawn.

* At some pinions the origination of the cracks could be observed, as these tests were stopped
during the first part of the lifetime. At these examples, it has consistently been shown that the
first visible cracks on the surface of the tooth root were located in the middle of the facewidth to
the toe side of the facewidth, as indicated in figure 4.3.

* The assumption that the middle of the face width of the pinion is the reference position for
calculating the maximum tooth root stress, can therefore be considered to be correct.

* For the position of the crack initiation in the normal section of the root, there is however a
difference between general calculating practice and observations of the test samples. The angle
of crack initiation lies in the range of 30°- 50° tangent to the tooth root.

4.2.3.3 Endurance Life and Heat Treatment

The following material structure and heat treatment parameters will be responsible for a variation
in fatigue characteristics:

* core strength

* surface hardness

* case carburising depth (Eht)

* amount of retained austenite / free ferrite

* surface oxydation and decarburisation

* possible carbides and precipitations.

Afer the tests, only data on the first three heat treatment parameters have been determined on
a limited number of the tests pinions. The other three parameters can only be determined by
extesive laboratory investigation; this has not been done here.

No significant correlation has been found between registered endurance life and the surface
hardness or the core strength, under the condition that the minimum value is 1100 N/mm?.
Physically this would be expected, since these aspects are beleived to be more related to the
appearance of surface fatigue or case crushing failures than with tooth root fatigue breakage.
However there appears to exist a correlation between the case depth and the registered
endurance life, based on the limited number of investigated pinions.

This tendency (fig. 4.8) is based on only a limited number of samples. There is a tendency of
increasing endurance life with an increasing case depth. Two different regions can be
distinguished between the largest and the smaller axle types. This difference is however caused
by the different stress levels resulting from the differences in gear geometry. To ensure and
verify this relation, further work will be necessary.

The observed tendency here corresponds partially to [4.13] where a correlation between case
depth and fatigue strength is observed. When the case depth is higher than a minimal required
value, however, there will hardly be any increase in fatigue strength to be expected, as is also
indicated in [2.5]. In [4.14] there appears however to be no correlation between case depth and
life, which is however contradictory to the here observed impression.

For a large scale production of rear axle gears, some amount of variation in several heat
treatment parameters inevitably will occur. Fig.4.9 gives the variation of the hardening profile for
most of the tested pinions. These values are attained with conventional manufacturing methods
under normal production conditions; it is representative for the production process of the gears
that have been investigated. The case depth in the tooth root is smaller than at the tooth
midheigth, which is normally to be expected.
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The actual measured case carburising depths of the tested gears at the middle of the tooth
height correspond very well with the general guidelines of the ANSI/AGMA, Winter-Niemann and
Oerlikon standards, that give a required case carburising depth of about (0.12 -0.25)*m,,.

If the relation between the endurance life and the case depth would be valid here, than this
would mean that most of the variation in registered life for one gear type and under a constant
and reproducable loading would be caused by the variation in case depth. This also could be an
indication that the greater part of endurance life would be determined by the crack initiation and
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Fig.4.8 Correlation between Endurance Life and Case Depth

propagation in the case hardened layer. Once the crack is propagated beyond the case hardened
surface layer into the core material, the fatigue characteristics would be determined by the
material structure of the core. It would appear that here the variation in fatigue life is partly
influenced by the variation in case depth.

It appears that a variation in the registerd life for the pinions with a value of about 2 would be
minimal. This will be only achieved when the gears are:

- from one and the same material and forging batch

- from one and the same heat treatment batch

- tested on one and the same test rig at a very constant loading.
When testing under the same conditions but only over a longer period, two to three years for one
axle type, one would expect a larger variation in endurance life because of the larger variation
of material characteristics. If on the other hand the variation in casedepth is limited to a specific
value by means of manufacture control, the anticipated spread in pinion endurance life may be
also restricted to a maximum value. In real vehicle application,where generally there is a large
difference in loading conditions, the variation in registered life wil increase, as indicated in the
chart of figure 2.20.
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Finally, the estimated stress under the tooth root surface at the “Maximum Torque” for all ratio’s
is drawn in fig. 4.9. From the comparison of allowable to actual stress, the critical point of crack
initiation may be considered to be located at the surface of the pinion tooth root and not under
the surface. Because of the stress concentration in the tooth root, which has a value of about
2.0, the sub surface hardness profile of the pinion here will not likely be the cause of sub surface
crack initiation.
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Fig. 4.9 Variation of Measured Hardness Profiles for several Pinions
and estimated Subsurface Stress due to Tooth Root Bending

It is always possible that the real crack origination was situated under the surface and not at the
root surface, as sometimes is possible at case hardened parts. On basis of this estimated sub
surface stress, that is compared with the measured hardness profiles, it is concluded that most
cracks will have been initiated at the surface.

* Constant amplitude fatigue test have been preformed on actual rear axle gears, *
* built in rear axle casings. The test were run at a relatively high and reproducable *
* torque level, so that tooth root breakage was clearly promoted. *
* The tests showed statistically reliable results, that could well be described *
* by a Weibull or a Lognormal failure distribution. *
* The first visible cracks on the root surface were in the middle of the facewidth *
* to the toeside. The angle of the crack propagation from the root surface into *
* the material was about 30° - 50°. *
* There appears to be a correlation between endurance life and casedepth, *

* although this is determined on a limited number of testsamples.
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4.3 Verification of Calculated and Measured Life

For a comparison of the actual recorded pinion endurance life of the test axles and the
theoretical calculations, only the tooth root stress calculations according to DIN 3991 for the
virtual bevel gears will be used.The reason for this is the fact that the author did not have the
same possibilities of performing extensive calculations according the other methods. This also
means that no comparative quality remark iwill be given on the different stress calculation
methods. The results of the constant amplitude tests are used for comparing the actual
measured and calculated endurance life of the rear axle gears. Based on the assumption of a
statistical endurance life distribution, a synthetic SN curve was established for the actual
measured endurance life values. Also some of the most important material endurance
characteristics have been determined.

The following procedure was used:

1. The tooth root stress of the hypoid pinions is calculated using the DIN 3991-method.

2. The extension for hypoid gear geometry according to Winter is applied.

3. A value for K,,., = 1.30 is used. For the investigated axles this factor is considered to be
constant and independent of the torque.

4. A linear relation between calculated tooth root stress and torque is assumed.

5. At each torque level, the registered pinion load cycles for a 10%, 50% and 90% failure

probability have been determined statistically. No distinction has been made for the axle
ratio at each axle type.

6. Straight lines were then drawn through these points on a dubble logarithmic stress-cycles
diagram. The stress is calculated, the number of pinion load cycles are the actual
registered cycles of the endurance tests.

The following criteria had to be fulfilled:

1. The difference between the endurance lifes at 10% and at 90% failure probability at the
maximum torque level should be about 2 to 3.

2. The assumed SN-line for the material will have a static limit at 10*3 cycles.

3. The difference between calculated- and measured life for 10% failure probability should

be minimal, at least less than 10% difference. For larger failure probabilities, the
difference may be larger, however it should also be as minimal as possible.

With these restrictions, it was possible to draw SN-curves, based on the results of the rear axle
endurance tests and fullfill the criteria mentioned above. The resulting SN diagram is given in
figure 4.10. Based on this figure, specific fatigue values, such as the endurance limit, the slope
of the SN curve and the number of limit cycles for the rear axle gear material have been
determined. Table 4.6 gives the typical fatigue data that have been established in that way. Here,
the endurance limit and the knick point are given as well as the slope of the limited life line for
several failure probabilities.

Figure 4.11 shows the relation between the endurance strength and its cumulative failure
probability. Note that the scale for the endurance strength is linear; this is not for the scale of the
cumulative failure probability. The points for the 10, 50 and 90 % failure probability have been
calculated, based on the registered number of cycles in the rear axle endurance tests. As they
are assumed to coincide with a Lognormal or a Weibull distribution for the endurance strength,a
straight line can be drawn through these points.
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Failure Endurance Slope Knickpoint

Probability Limit SN-curve N,
[%] [N/mm2] -] -l

1 595 6.00 3*10°

5 615 6.25 3*10°

10 625 6.50 3*10°

50 670 7.25 4*10°

90 705 7.75 5*10°

95 720 8.15 5*10°

99 740 8.50 5*10°

Static Limit 2125 - 1*10°

Table 4.6 Endurance Data established from Testresults

CUMULATIVE
FAILURE PROBABILITY [%]
/
99 /0
95 /=
90 ®
50 °
Lognormal and
Weibuli
distribufion of
10 /o festresults
5 /O
7 “—“—/.i
{y ! | ! |
600 700 800

ENDURANCE STRENGTH (N/mmZ] —=

Fig. 4.11 Endurance Strength and Failure Probability
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The values for 1, 5, 95 and 99% failure probability have not been calculated on basis of the
registered gear life. They have been determined by assuming a straight line between failure
probability and endurance strength. The difference between several distribution functions such
as a normal, a lognormal, a 2 and a 3-parameter Weibull failure distribution may become very
large for regions outside the 10-50-90% failure probability, as indicated in [4.6]. Therefore these
last values should be used with care. Table 4.7 and 4.8 give the difference in % between the
calculated and the measured pinion endurance lifes at the maximum output torque level for 10,
50 and 90% failure probability. From this it can be seen that generally the differences between
calculated and registered life for the 10% probability are the smallest. For a negative value of the
difference, the calculated pinion life is smaller than the actual one.

The region of 10 % failure probability is the most important area for designing automotive rear
axle gears. Therefore larger differences between calculated and registered life for higher failure
probabilities are acceptable. As can be seen from both tables, the difference between calculated
and actual gear life depends on the assumed failure distribution. The values differ only to a small
extent.

Crownwheel diameter | Failure Probability Failure Probability Failure Probability
[mm] fp.=10% f.p. =50 % f.p. =90 %
485 -0.03 -8.34 -16.25
445 3.98 11.38 16.42
425 -2.78 -1.06 -2.08
410 -18.11 -24.01 -27.85

Table 4.7. Difference in % between calculated and actual pinion life (Lognormal Distribution)

Crownwheel diameter | Failure Probability | Failure Probability Failure Probability
[mm] f.p.=10% f.p.=50% f.p.=90%
485 -5.48 -3.27 1.18
445 8.03 11.38 18.76
425 6.05 2.02 7.89
410 -11.28 -19.26 -17.74

Table 4.8. Difference in % between calculated and actual pinion life (2-par. Weibull Distribution)

For the 10% failure probability the difference between calculated and actual life is equal to or less
than 10 % for three largest axle types and for both failure distributions. This is an acceptable
error for designing and calculating rear axle hypoid gears. For the 50 % failure probability the
maximum difference is just over 10 %. Only for the smallest axle type however, the difference
between calculated and actual life is significantly larger than 10%, in this way that the actual life
is always larger than calculated. These findings are graphically represented in figure 4.12.
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Fig. 4.12 Difference between Calculated and Actual Endurance Life of Pinions

4.4 Discussion of Test Results: Material Related Aspects

Based on the testresults, an SN curve has been established for tooth root fatigue failure of
hypoid gears in rear axles. The most important fatigue related aspects that can be derived are:
* Relation of endurance strength with failure probability.
* Slope of the SN curve, k-factor.
* Ratio of static to endurance strength.

These three aspects, for different cumulative failure probabilities, have been established from
the testresults and are compared with data from different sources.

In fig. 4.13 the ratio of endurance strength for several failure probabilities is given, in which the
black dotted points are the results of the endurance tests. They are in line with the range
according to DIN 3990 for helical gears. The fact that the stress calculations are based on the
DIN 3991 standard only partially accounts for this correspondence. They also correspond to the
results of rotating bending fatigue tests on unnotched samples from the same material as where
the testgears were made of [4.18]. It differs however clearly from the values according to
Gleason [2.6] and ANSI/AGMA [2.3].

In fig. 4.14 the slope of the resulting SN-curve is drawn; it varies between 6.5 and 8 for 10% to
90% probability. With an assumed SN-curve that has only one value of a static allowable stress
at 1*10° cycles, the value of the slope depends on the failure probability. This is purely a resuit
from the varying endurance strength with failure probability, whereas the static strength is
assumed to be independent of the failure probability. The values for the slopes of the SN curve,
the k-factor, have been compared with other data, as indicated in fig. 4.14. From this, it can be
seen that there are two different regions of the k-factors for helical and bevel/hypoid gears. The
data of bevel and hypoid gears are derived from [2.6] - [2.19]; the helical gears from [4.2] to [4.7].
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Fig. 4.13 Ratio of Endurance Strength and Failure Probability

It appears that for a given failure probability, the slope of the SN curve for helical gears is lower
than for bevel/hypoid gears. For helical gears the value is 7.5 to 10, whereas this value ranges
from 5.5 to 8.0 for bevel/hypoid gears.

The values for the k-factor for hypoid gears are determined on the results of the endurance tests.
Here, a linear relationship is assumed between tooth root stress and applied torque. This is also
the case for helical gears, where identical case carburised gear materials are used.

This difference of the k-factor between helical and hypoid gears with comparable material is a
point of concern, as the slope of the SN curve should mainly be determined by material
characteristics. Hardly any differences in k-factors should therefore be expected.
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Fig. 4.14 k-factor of SN Curve and Failure Probability

Fig.4.15 shows the ratio of the static to endurance strength for several failure probabilities.
Also here a striking difference appears in this ratio as a function of failure probability, between
bevel/hypoid and helical gears. This aspect appears to be strange because spur/helical and
bevel/hypoid gears, manufactured from the same material with equivalent heat treatment and
thus comparable material behaviour, are expected to exhibit one and the same slope of the SN-
curve as well as the same ratio of static stress to endurance limit.

The difference in k-factor and ratio static/endurance strength between helical and hypoid gears
might be determined by the difference in crack growth between both types of gears.
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Fig. 4.15 Ratio Static to Endurance Strength and Failure Probability

As already indicated, there appears to be a distinct difference in the observed direction of crack
propagationbetween the tested gears and what is normally to be expected for helical gears. In
that way the difference in stress complexity between helical and hypoid gears as well as the
forged material may cause the observed phenomena.

For helical gears there is however no relation observed between the slope of the SN curve and
the forging of the material. Also no difference is made in the stress calculation with regard to the
influence of a complex stress situation, for spur and helical gears with straight teeth, as well as
helical gears with curved teeth. This means that these just mentioned aspects will hardly play a
role in the observed different fatigue characteristics between the helical and hypoid gears.
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In this way, a quite different aspect may play a much more important role here, namely the fact
that the relation between stress and torque for bevel/hypoid gears principally is not linear,
whereas it is linear for helical gears. Tooth root stress calculations for spur/helical gears and
bevel/hypoid gears all assume a linear relation between applied input torque and tooth root
stress. If the actual relation indeed would be a linear behaviour, than endurance tests should give
one and the same slope of the SN-curves for helical as well as bevel/hypoid gears for the same
material and fatigue failure mode. If the root stress however would not be linear with torque for
bevel/hypoid gears, then a difference might be expected in fatigue related values.

Several measurements [3.8] to [3.12 have shown that the relation between pinion tooth root
stress and torque level is not linear for bevel/hypoid gears. With an increasing torque, the slope
of the root stress versus torque relation gradually decreases. This value is of course influenced
by gear geometry, of which the width of the contact pattern and the load sharing during
increasing torque are the dominant parameters. Fig. 4.16 gives the relation between tooth stress
and torque, as can be derived from [2.41] to [2.43]. In this graph, the stress at the maximum
torque was taken as the reference. Then, for lower torques, the ratio of the stress to the stress
at maximum torque was calculated. It shows that at about 50% of the maximum torque, the
actual root stress is about 15-20% higher than when a linear relation is assumed.
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Fig. 4.16 Tooth Root Stress versus Torque as measured in [2.41] and [3.10]

In the analysis of the endurance test results, the vertical scale holds the calculated stress which
is based on a linear relation between stress and torque. The slope of the SN curve for a non
linear stressftorque relationship, then will differ from the slope for a linear stress/torque relation.
Starting from a given stress at a maximum torque with a maximum width for the contact pattern,
the calculated root stress at lower torques will be slightly higher for a non linear relation between
stress and torque. This would mean that the slope of a well fitting SN curve will then be lower
and hence the value for the k-factor will be higher for a linear relation between stress and torque.
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This means that a non linear relation between stress and torque should actually be present in
the calculations. If this would be the case, then the same endurance material characteristics
such as the k-factor or the slope of the SN curve as well as the ratio of static strength to
endurance limit for case hardened helical gears, could be applied to both bevel and hypoid gears.
In that way, no difference would be required for specific material values between bevel/hypoid
and helical/spur gears. Physically this would be correct as a given material will have one and the
same fatigue behaviour, irrespective of the gear type it is used for.

The reasons for a non linearity between root stress and torque on bevel/hypoid gears are:

* The growth of the contact pattern width under increasing torque and hence an increasing
effective face width of the tooth load at increasing load.
* A shift of contact pattern under increasing load and hereby loading a larger tooth section.

Generally this non linearity between root stress and torque may be considered as being structural
for bevel and hypoid gears. For helical and spur gears the relation between root stress and
torque is in almost all cases linear. This would mean that a new factor should be introduced in
the stress calculations for bevel and hypoid gears, that takes account for this non linearity.

In this factor, the influence of the contact pattern on the non linear relation between root stress
and torque will have to be embodied. First the growth of the contact width and the contact height
are involved. Secondly the shift of the contact pattern in combination with variation of the tooth
root section over the face width are to be taken into account.

Even in the ANSI/AGMA standard, a special remark is made on this aspect. Here the difference
between the slope for helical and bevel gears is thought to be caused by the shifting of the
contact pattern towards the heel side, where for tapered tooth heights the root section is wider
and hence the stress will be lower.
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Fig. 4.17 Development of Contact Width for the Tested Gears
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In fig.4.17 a summarised graph is given on the growth of the contact width under increasing input
torque, as measured on the tested rear axle gears. The contact pattern development of the four
investigated rear axles are all situated within the indicated bandwidth. At low torques the contact
width increases very quickly, whereas at about 70-75% of the Maximum torque the contact
pattern almost completely covers the entire facewidth. A similar characteristic for the contact
height may be drawn, although the maximum value is attained at a much lower torque, because
of the much smaller crowning in the profile direction than in the lengthwise direction.

Based on the actual measurements of the increase in contact pattern width from fig. 4.17, it can
be derived that the effective face width limited by the contact pattern at 50% of the maximum
torque is about 15 to 20% smaller. This would mean that at 50% of the maximum torque the
tooth root stress will be about 15 to 20% higher than when a linear relation is assumed.

Life calculations have been performed with a non linear relation between root stress and torque.
The endurance strength ranged from 710-730 N/mm? for the 10% failure probability and the root
stress at maximum test torque was 5% higher than when calculated with a full geometric
facewidth, because of the maximum effective facewidth being 95% of the geometric facewidth.
In that situation the ratio of calculated to realised endurance life for three axle types also
appeared to be less than a 10% deviation. The value of the k-factor for the 10% failure probability
was 8.50. This would come more in line with the already existing values for helical gears in the
same material.

Therefore, it is well advisable to apply a non linear behaviour between the tooth root stress and
the torque at the tooth root stress calculations and to subsequently adapt the material fatigue
data. This means an alteration of the endurance limit and the slope of the SN-curve to values
that are more in line with already existing data for helical gears in case hardened materials.

4.5 Proposal for Improved Calculation Method:
Introducing a Non Linear Stress-to-Torque Relationship

The influence of the non linearity between tooth root stress and torque is mainly caused by the
behaviour of the contact pattern when the torque is varied. This behaviour of the contact pattern
can be described in two different ways:

* change in size of contact pattern

* change of position of contact pattern.
The size of the contact pattern can be expressed in the direction of the facewidth (contact
pattern width) and in the direction of the tooth profile (contact pattern height). The width of the
contact pattern generally increases at an increasing torque. As a result, the gear unit load, F,/b
will not increase in a similar way as the gear load does. The effective facewidth also increases
at an increasing contact pattern width, hereby increasing the effective face contact ratio. This in
it's turn has a positive effect on the load sharing of the gear load as theoretically more teeth are
engaged. Both effects act together thereby ensuring a non linear behaviour. The height of the
contact pattern, of which the growth is mostly much smaller than in the direction of the facewidth,
influences the effective profile contact ratio. In it's turn it influences the amount of tooth load
sharing. A larger contact pattern height leads theoretically to a larger load share.
The position of the contact pattern can also be expressed in the direction of the facewidth and
in the direction of the tooth profile. When the mean position of the contact pattern changes in the
direction of the facewidth, generally a different normal section of the gear tooth will be loaded.
This will result in a change of the tooth form factor thereby changing the tooth root stress.
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The mean normal section may however vary over the facewidth of the gear. This mostly depends
on normal gear data such as mean cone distance and cutter radius, as well the tooth form
(tapered or costant tooth height) and the actual deflections of both gears relative to each other
in the driving head. A shift of the contact width in profile direction will lead a change in the point
of load application or in the bending arm of the tooth load. This also influences the root stress.
Therefore a new geometry factor is proposed, that accounts for the influence of the contact
pattern on tooth root stress. This factor is called the Contact Pattern Factor Y ;. In this factor,
both the influences of the size as well as the shift of the contact pattern on the tooth root stress
are incorporated. This Contact Pattern Factor thus is the product of the Contact Pattern Factor
for Shift Y ¢z and the Contact Pattern Factor for Size Y ¢p gize-
The Contact Pattern Factor for Size Y ¢p.;, is influenced by the following parameters:

* Output torque, relativeto T , o,

* Amount of gear crowning in direction of facewidth and in profile direction

* Gear geometry.
The Contact Pattern factor for Shift Y .p.. is influenced by the following parameters:

* Gear deflections under load in driving head,

* Tooth type, constant or tapered tooth height; m,,, = f (cone distance, facewidth),

* Ratio of gear curvature to mean cone distance.

The following expressions for the Contact Pattern Factor are proposed:

Ycontactpattem = YC = YCP—size*YCP—shift (41)
T =T+«GVW resp T :(.—qﬁ?—ﬁ (4.2)
max m¥x *12.5-14.5 '
be T2
(=2) = 0.40+0.55% | — for L,=(0.01-0.02)+m,,, (4.3)
b T o
1 1
YCP—size = = 4
() 0.4+0.55 T (4.4)
max
r
Yep-shit = 172 Trao 'éc_ m,=fin] = 1.0 (4.5)

m



4 Endurance Tests on Hypoid Gears 97

The definition of the maximum output torque is based on the method of chapter 6.2. As the
change in contact pattern size in the direction of the facewidth is much more pronounced than
in the direction of the tooth profile, the change of the contact pattern in the facewidth direction
may only be used for a first order definition of the factor for contact pattern.

Also here, the changes in the position of the contact pattern in the direction of the facewidth are
much more pronounced than in the tooth profile direction. As this strongly depends on the gear
type and geometry, it is very difficult to give an approximation of this effect on the tooth root
stress. Therefore, the value for this factor has been set to unity. Further investigations are
required to determine an expression for this Contact Pattern factor for Shift Y cp z-

Two very important aspects should however be mentioned here.

First the fact, that all geometry factors and the unified tooth root stress should be expressed in
the nominal gear geometry values. This means that these factors are only determined by the
gear geometry and hence they are constant values at a given gear geometry, irrespective of the
output torque. The only geometry factors that depend on the output torque, is the just proposed
Contact Pattern Factor. It may therefore be also appropriate to position this Contact Pattern
Factor in the row of Load Factors.

Second is that when this Contact Pattern Factor is used, the non linearity of the stress-to-torque
relationship is automatically accounted for. This means that the same material fatigue data, more
particular the slope of the SN curve, for case carburised helical gears now can be used for bevel
and hypoid gears. In this situation, there will then be no or hardly any difference in the applied
material fatigue data between spur/helical gears and bevel/hypoid gears of the same material.
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The equations, used for determining the non linear pinion tooth root stress are as follows:

Or = Oclinar,, * T

max

(4.6)

Y, = 04 +0.55 x

T;
Yo = 095 - for—L >1.0

0F|Iin@ Tomx Of ( o/T-linear, T b .= 100%)

max’ e

Fig 4.18 shows the principal relation between tooth root stress and torque for bevel and hypoid
gears, when a non linearity is present. At the maximum torque T, the stress is 5% higher than
originally calculated with a linear relation and for a full geometric facewidth. In the non-linear
stress-torque relation, the maximum effective facewidth is limited to a maximum of 95% of the
full geometric facewidth. The minimum effective facewidth is 40% of the geometric facewidth;
this means that the slope of the stress-torque curve at zero torque is a factor 2.5 higher than if
the full facewidth is assumed. At torques higher than T, the root stress behaviour is again linear
with torque, but it always remains 5 % larger than for a linear relation.

Failure Endurance Slope Knickpoint

Probability Limit SN-curve N,
[%] [N/mm2] [-] -]

1 690 7.50 3*10°

5 710 7.75 3*10°

10 720 8.00 3*10°

50 757 8.75 4*10°

90 790 9.50 5*10°

95 800 9.75 5*10°

99 820 10.0 5*10°

Static Limit 2125 - 1*10°

Table 4.9 Endurance Data established from Testresults for a Non Linear Stress-Torque Relation
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With this non linear relation between root stress and torque, the endurance material related data
from table 4.9 have been established in the same way as chapter 4.3.

The endurance data of the three characteristic failure probabilities of 10, 50 and 90 % have been
established by comparison of the calculated and the actual registered pinion life cycles. The
endurance data for the other failure probabilities have been determined only by assuming straight
lines in the graphs of figures 4.13 to 4.15; therefore these data are not verified.

Especially the k-factor for the slope of the SN curve comes very well in line with those from
helical gears of comparable gear material. With these values for endurance chararcteristics, the
ratio of calulated to realised pinion load cycles for the 10, 50 and 90% failure probability becomes
as indicated in tables 4.10 and 4.11.

Crownwheel diameter | Failure Probability | Failure Probability Failure Probability
[mm] f.p.=10% f.p. =50 % f.p. =90 %
485 +5.47 -2.97 - 14.06
445 - 5.06 +2.05 +0.92
425 -4.47 - 2.68 -7.56
410 - 30.93 -35.80 - 43.00

Table 4.10. Difference in % between Calculated and Actual Pinion Endurance Life for a
Lognormal Failure Distribution and a Non Linear Stress-Torque Relation

Crownwheel diameter | Failure Probability | Failure Probability Failure Probability
[mm] f.p.=10% f.p. =50 % f.p. =90 %
485 - 0.28 +2.40 + 3.82
445 -1.36 +2.05 +2.95
425 +4.21 +0.34 +1.85
410 - 25.17 -31.78 - 35.01

Table 4.11.  Difference in % between Calculated and Actual Pinion Endurance Life for a
2-parameter Weibull Failure Distribution and a Non Linear Stress-Torque Relation

Both tables show that for the three largest axle types, the difference between calculated and
actual pinion load cycles very clearly lies between plus-minus 10% and this for all three failure
probabilities of 10, 50 and 90%. These differences are significantly smaller than for those,
calculated with a linear stress/torque relation, as can be sen in fig. 4.19.

Only for the smallest axle type, the difference between calculation and realisation is relatively
large for all three failure probabilities. Here the difference between calculated and actual pinion
load cycles is about 30 -40 %. Roughly estimated this would mean a difference in actual or
allowable pinion root stress of about 3.5 % at all three failure probabilities. The reason for this
difference has not been investigated as this axle type is not in production.
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The calculated pinion tooth root stress for the different axle types may attain a specific stress
value at the characteristic output torque T,,,. This maximum output torque was determined
according to the definition of equation (4.2), where a value of 13.12 is assumed for the constant
coefficient in the expression for crownwheel outerdiameter and maximum output torque. Table
4.12 gives a summary of those characteristic calculated root stress values for the pinion. These
values give the calculated pinion load cycles when the endurance values for a non-linear stress-
torque relation of table 4.9 are used.

This means that when the definition for the maximum output torque T, is applied according to
equation (4.2), the calculated pinion root stresses for all four axles appear to lie within the range
of 1135 to 1140 N/mm?, which resembles a tolerance of less than 0.5 %. These data may well
be considered to be characteristic design values for the tested vehicle rear axle gears.

Crownwheel Maximum Calculated
Outer Diameter Output Torque Pinion Root Stress
[mm] [Nm] [N/mm?]

485 50.500 1135
445 39.000 1140
425 34.000 1135
410 30.500 1135

Table 4.12.  Characteristic Data for Tooth Root Stress Calculations for Constant Amplitude
Loading, when a Non Linear Stress-Torque Relation is assumed
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4.6 Resumee

Constant Amplitude Load endurance tests for tooth breakage on four different types of hypoid
rear axle gears have been performed. The results for constant amplitude loading at maximum
torque have been statistically analysed. All show defined failure modes, which are clearly
tooth root fatigue breakage.

The variation in registered cycles for 10- and 90%-failure probability is 2 to 3. This is relatively
small, mainly because of the high tooth root stress value which provokes evidently fatigue
breakage and the relatively acurately torque level that was maintained during the tests.

The results of the endurance tests have been described by a 2 parameter Weibull and a
Lognormal failure distribution with a relatively good correlation factor.
Therefore the resduilts of the endurance tests may be considered to be reliable.

A correlation of the actual measured endurance lifes and the calculated lifes has been
performed. The root stress calculations were performed with DIN 3991 for the virtual bevel
gears. The virtual bevel gears were calculated according to the method as given by Winter.
The Faceload Distribution Factor for the tested rear axle gears was set equal to 1.30. This
value is only valid for the axle types that have been tested with a straddle mounted pinion.

Based on this correlation, material fatigue data have been established for the gear material.
The endurance limit and the slope of the SN-curve that have been established give lower
values than for helical and spur gears of comparable material. For the hypoid gears first a
linear relationship was assumed between calculated stress and torque, just as is the case
with other gear types.

With this correlation, it was possible to reduce the difference between actual and calculated
gear life for three axles within plus-minus 10%, for a 10% failure probability.

A non linear relationship has been introduced between tooth root stress and input torque.
This non linearity between torque and tooth root stress for bevel and hypoid gears is mainly
caused by the variation on the width of the contact pattern when the outpu torque is varied.
This is a normal phenomena for bevel and hypoid gears.

With this non linear stress-torque relation, a second correlation between measured and actual
lifes has been performed. Now the value for the endurance limit and the slope of the SN
curve clearly come much more in line with those of helical gears of the same material.

Two factors have therefore been proposed in order to accomodate for the non linear stress-
to-torque relation. These factors incorporate the size and the position of the contact pattern.
The contact pattern position factor was set to unity. When using the factor for contact pattern
width, the geometry factors and the gear unit load may then be based on the nominal
geometric data of the gears. The maximum effective gear facewidth here is assumed to
become 95% of the full geometric value for the facewidth.

With this, a non linear relation between tooth root stress and torque is assured. Then the
slope of the SN curve and the ratio static to endurance stress of bevel and hypoid gears
come close to the values for spur and helical gears of identical material.

With this non linear relation between stress and torque, the difference between calculated
and actual pinion life for the three largest axle types becomes distinctively smaller than with a
linear relation. In this way, a non linear stress-torque should be used for calculating tooth root
stress on bevel and hypoid gears.



102 5 Driveline Load Spectra for Truck Applications

5 DRIVELINE LOAD SPECTRA FOR TRUCK APPLICATIONS

5.1 Introduction

In the previous chapter a method has been developed to predict the expected life for rear axle
gears under a constant amplitude loading. In actual vehicle application, automotive rear axle
gears are typically loaded under varying conditions. These loading conditions, described in
terms of input torque, speed and oil temperature are constantly changing during actual
operation. The oil temperature hardly has any influence on teeth breakage failures, when a
maximum value is not exceeded to prevent annealing effects of the gear material. Then gear
loading conditions are sufficiently described by torque and speed [5.1].

In order to make a reliable prediction of the expected gear service life in actual vehicle
operation, the influence of varying loads on endurance behaviour will have to be taken into
consideration. The service loads during actual operation can best be described by a load
spectrum, sometimes refered to as loadcycle history or load histogram. When a load
spectrum is combined with the known stress-to-torque relation of the gears and a damage
accumulation theory, it then is possible to give a prediction on the expected service life for
rear axle gears at variable amplitude loading [5.2].

In this chapter, some representative load spectra for rear axle gears will be discussed. These
will be compared with calculated load spectra. Then, calculated load spectra for some
representative vehicle applications will be analysed. On basis of this, they will be
approximated by two descriptions of a continuous spectrum. With these two spectra, that are
in fact simplifications of the calculated torques, expressions for the equivalent torque will be
developed. In this way a simplified method is then available for determining the expected
equivalent torque on rear axle gears for some representative vehicle applications.

5.2 Measured Load Spectra

Loading spectra have been determined for some vehicle applications, typical testing routes
that are mostly used by proto vehicles. The gross combination weight GCW varies from 38 to
41 tonnes, the engine power ranges from 230 kW to 375 Kw. Two specific types of routes
have been selected, namely typical Test Routes and Transport Routes.
The Test Routes are representative for International Transport or Long Distance Haulage with
a relatively high to severe loading on the driveline components. In this way, much information
on the driveline capabilities can be gathered in a relatively short time. These routes are:

-"LuO”-Route or the "Lastauto und Omnibus"-Route,

-"Fulda"-Route.
The name of the last route refers to the city in the region where the testroute is situated. Both
routes are used for testing purposes and are situated in Western Germany.
The Transport Routes that have been measured are representative for National Transport.
Typical parts of these types of route are:

-"Secundary"-Road,

-"Distribution"-Route, in between several cities,

-"Inner City"-Route with intensive city traffic.
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The driveline torque and speed are measured during actual vehicle operation. After the data
aquisition, the measured values are counted and classified according to a specific method
and represented in load histograms, where the measured rear axle input torque and speed
are given in the form of a table. Both torque and speed are divided into different classes of a
predetermined value. Different class values may be used for torque and speed. At all
measured torque/speed combinations, the time of occurence is registered. It may also be
possible to indicate the total number of driveshaft revolutions at each specific torque/speed
combination. These histograms then may be modified into a continuous diagram, which then
becomes the load spectrum. This is a standard method to determine the load spectrum.

In a loading spectrum the value of the torque is given as a function of its cumulative fraction
of loading cycles. The fraction mostly ranges from 10 to 1. The latter coincides with 100% of
all registered loading cycles. Because of limitations of the measuring equipment, in some
cases the minimum fraction is limited to 10°. As the torque values are both positive and
negative, the scale of torque mostly is linear although in some load spectra a logarithmic
scale is used for the torque. For the number of loading cycles, in almost all cases a
logarithmic scale is used, because of the relatively large number of load cycles. A continuous
load spectrum may be established for the Drive and Coast loading condition separately.
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Fig. 5.1
Measured Driveline Load Spectra for different Test Routes (positive torques)
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Depending on the maximum frequency of measured torques, the actual maximum value that
occurred during driving may have been higher than given in the spectrum. The duration of
high peak torques is very small, so these may not always be registrated in the measured load
spectrum. Mostly a very long duration of the test is required for determining torque values that
occur only incidently. The width of each measured torque-class may vary according to the
possibilities of the measuring equipment.

Fig. 5.1 gives the results of measured load spectra for the rear axle output torque, for some
Test Routes that are typical for Long Distance Haulage or International Transport. For these
Test Routes, about 65-70% of the number of load cycles is in Drive condition, whereas the
remaining 30-35% of the registered cycles is in Coast condition. This is an extra indication
that the routes are relatively hilly, since on a flat route or with an unloaded vehicle, the Driving
side of the gear flanks will be loaded during about 90% of the time.

Fig. 5.2 shows measured load spectra of rear axle output torque for some typical Transport
Routes. The general appearance of these spectra is more severe for the driveline than the
spectra of fig. 5.1. This would also be expected in view of the typical loading conditions that
will prevail on these routes. The load spectrum for a 38 tonne / 230 kW vehicle on National
Transport is more severe than the load spectrum for a 41 tonne / 375 kW vehicle on an
International Transport Route. A large amount of vehicle acceleration and gear shifts because
of traffic situations in National Transport are the main cause for these differences.
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Fig. 5.2

Measured Driveline Load Spectra for different Transport Routes (positive torques)
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Extreme high torques that occur only during a very limited time, are not recorded here since
the measured minimum fraction is not less than 10° to 10*. Torques on the Drive side occur
during about 80% of all cycles on the Distribution and Secundary road, whereas this value
reduces to 70% in City Traffic. As these test have been performed with one and the same
vehicle and driver, these differences may be seen as representative for different route types.

The representative or equivalent speed of the driveshaft at each torque level has been
determined for all these measured loading spectra. This representative speed is calculated by
adding the individual products of the time of occurence with speed (time * speed) at every
torque level and dividing this summation by the total time of occurence at this particular
torque level. In this way, each torque level may be seen as being operated at one constant
and equivalent driveshaft speed. In this way an impression may be obtained at what
representative power level the torque value has been applied. The representative
combinations of driveshaft speed and torque that have been determined in this way on
different Routes for one and the same vehicle, are given in figure. 5.3. For each torque, a
specific fraction of the installed engine power can be considered to be representative for a
vehicle application. For higher vehicle speeds, a constant power may be regarded to be
representative for vehicle use. For the higher torques at City, Distribution and Secundary
Roads, torque is more required than power as these are mostly stop-and-go accelerations.
For Hillclimb, which is high torque / low speed, about 80% of the engine power is used.
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Fig. 5.3 Representative Speed and Torque for different Routes
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At intensive city traffic this fraction is about 65%. For a Distribution Route and a Secundary
Road, the fraction of applied engine power at the high torque / low speed range is about 50%.
On both routetypes, however, the maximum measured torques are identical. The required
torque for accelerating a vehicle in city traffic may be comparable to a hilliclimb with a
constant speed. For the low torque / high speed range, about 65% of the maximum engine
power is applied up to the point of maximum speed, irrespective of the route type.

This would mean that for design purposes, the installed engine power or a given fraction of
this may be regarded to be one of the most dominant parameters for determining the
significant torque/speed combinations of the load spectrum, next to the vehicle weight
GVWI/GCW and the routetype. A value of 80% of the installed power may be assumed for
International Transport. For National Transport about 65% of the engine power may be
considered to be representative for the driveline loading spectrum. For the high torques, a
smaller amount of the engine power is used, as in these regions the torque will prevail rather
than the required power. For this maximum torque, the vehicle weight GVW/GCW will be the
main determining factor. The maximum rear axle input speed is limited to a vehicle speed of
about 1.20 times the average vehicle speed. These considerations will only be valid for trucks
where the ratio of engine power to vehicle weight has a value in the range of 6 to 9 kW/ton.
As the specific power for passenger cars is much higher, the use of the available engine
power will be quite different there.

Therefore it can be stated that for initial design purposes, the installed engine power, the
vehicle weight and the route type are the three variables that will mostly determine the
representative loading spectrum of rear axle gears for truck applications.

5.3 Comparison of Measured and Calculated Load Spectra.

A computer program called ROSI (ROute Simulation) has been created by the development
department of DAF trucks [5.22]. Here the driveline loading of a vehicle can be calculated by
simulation for different vehicle applications. It gives the possibility to calculate a load
spectrum and load histogram of the rear axle input torque for a given vehicle with detailed
specification, a route description and a driver type. In chapter 1 the required data to perform
these claculations are given. The actual measured vehicle speed and slope profile for several
routes is the basis of the calculation programm. The rear axle input speed and torque that are
required to give the vehicle a predescribed speed profile, are calculated by simulation. Figure
5.4 gives a direct comparison of the measured and calculated loading spectrum for a test
vehicle on the Fulda route [5.23]. The vehicle GCW was 41 tonne, the installed engine power
375 kW.

For the Drive side loading of the gears, there are only relatively small differences between the
measured and simulated loading spectra. For low torques the correlation is very good;
wheras for high torques the difference increases. Measured and calculated spectra both
show hardly any influence of a secundary retarder on the load spectrum. For the Coast
loading, the influence of the retarder on the measured spectrum is clearly visible.

The mean value of the measured torque lies at about 40% of the torque class values, which
is a result of the probability distribution of the measured torque values within each class.

The Drive condition gives a good correlation between measurement and calculation for the
low torque range. For the medium torque range of 4 to 10 kNm, the difference between
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measured and calculated torque amounts to about 10%, which may be considered as
relatively small. At higher torque values the difference between measured and calculated
torques increases. This is caused by the deterministic character of the calculated torques that
have not been measured during actual vehicle operation, because of the very small time of
occurrence and the capacity of the measuring equipment. For the Coast condition, the
difference between the measured and calculated spectrum is more difficult to determine.
Since the measured torques only cover a small fraction of the total number of cycles, only a
comparison can be made for this part. The calculated load spectrum is valid without the use
of a secundary retarder. The correlation for this small part of the spectrum is relatively good.
As this covers only a relatively small range of cycles, this comparison should further not been
used.
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Fig. 5.4 Comparison of Calculated and Measured Driveline Load Spectra

Generally a variation can be expected between different measured spectra for one vehicle.
This is the result of changing traffic conditions, different traffic situations and driver
behaviour. In view of this, the correlation between calculated and measured load spectrum
may be regarded as being good.

This means that with this simulation program, a good description can be given of the loading
spectrum that can be expected for a given vehicle and route description on the Drive
Condition. This is only valid under the condition that the route is known in terms of slope and
speed profile. For the Coast condition, however the calculated spectrum without the use of a
secundary retarder only is to be considered for a minimal fraction of 103 to 10.
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5.4 Some Calculated Load Spectra

Several calculations have been performed with the Route Simulation program to determine
the driveline load spectrum. Two representative truck applications have been simulated,
namely Test Routes and Transport Routes. Both Test Routes are described in terms of the
actual measured vehicle speed and the route gradients. The Transport Routes are typical
International Transport and National Transport, and they are described by characteristics as
roadtype (highway / secundary road / city) and slopetype (flat / hilly / mountains).
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Fig. 5.5 Calculated Load Spectra for Test Routes

Load spectra have been calculated for a 44 tonne vehicle with a 300 kW engine and a rear
axle ratio of 2.93. Figure 5.5 shows calculated loading spectra for both Test Routes, whereas
figure 5.6 holds the spectra for two Transport Routes. In all graphs the rear axle torque is
plotted on a lineair scale and the cumulative fraction of loading cycles on a logarithmic scale.
Both the Drive and Coast loading are calculated.

The results of many comparable simulations show that these calculated rear axle loading
spectra also can be approximated in a uniform way. This approximation is indicated by
relatively thick lines in the graphs. The dotted lies are the simulated load spectra with a
specific torque class, indicating the upper and lower value of the torque at each fraction of
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the distance. The Drive side of both Transport Routes consist of a straight line approximation
for the high torque range and a slight concave curve for the low torque range. The Coast side
of the spectra for the Test Routes can be approximated by two straight lines with different
slopes. The slope of the straight line approximation on the mid-to-high torque range is higher
than on the low torque range. No retarder is used here. National Transport obviously gives
higher torques than International Transport. Both spectra have an identical minimal torque.
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Fig. 5.6 Calculated Load Spectra for Transport Routes

This straight line shape of the loading spectrum in a diagram with lineair-logarithmic scales
comes down to a stochastic behaviour of the driving torque over a longer period.
Deterministic torques that occur only during a very limited time and that are a result of
specific actions of the driver, such as extreme gearshift and heavy acceleration of the vehicle,
result in high torque values. They are however not indicated in the spectra, because they only
take account for a fraction of the total number of revolutions that is smaller than 10°.

The minimum values of the torque in all spectra are required to drive the vehicle over a flat or
slightly sloped road. The maximum theoretical value will be required to climb the steepest hill
on an International Transport Route or to achieve the required acceleration on National
Transport. In this way, these calculated rear axle load spectra can be simplified.
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5.5 Simplification of Load Spectra

In figure. 5.7 a group of calculated and simplified load spectra is given for a 38 tonne vehicle
with 230 kW engine power travelling on a standard International Transport Route. The pinion
input torque is calculated here for five different rear axle ratio's. The typical curve for the
Drive side loading, a part convex shaped and a part straight line for the spectrum, can clearly
be seen. This type of driveline load spectrum may considered to be representative for
transport in general.
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Fig. 5.7 Simplifications for Calculated Load Spectra

There are two basic types for driveline load spectra that can be distinghuished, based on the
following graphical representations:

* a lineair load spectrum in a dubble logarithmic diagram: the “Log-Log” spectrum.

* a lineair load spectrum in a linear-logarithmic diagram; the “Lin-Log” spectrum.

These two basic types of driveline load spectra can be represented schematically by scaling
the torque and the cumulative fraction of cycles in dimensionless units. The ratio of the actual
value to the maximum value for the torque and the cumulative distance fraction are used
here, as indicated in figure 5.8.

The load spectra are only given for the Drive condition; the Coast side is not considered here.
It is assumed that the maximum torques will not lead to any static overloading. The
cumulative fraction of the loading cycles on the horizontal scale ranges from 10° up to 1.0.
The ratio of the actual to maximum torque ranges from O to 1. Most of the calculated load
spectra that can be regarded as representative for normal truck applications, will have a form



5 Driveline Load Spectra for Truck Applications 111

that is either one of two or that is situated somewhere in between both variants.

The upper graph is very close to a lognormal distribution, being the result of a stochastic
driveline use. As it's representation is a straight line in a double logarithmic diagram, this is
called a "Log-Log” spectrum. The lower graph is close to a normal distribution. Here
deterministic effects, such as gearshift and accellerations of the vehicle resulting in high
torques, are hardly taken into account. It's representation is a straight line in a linear-
logarithmic diagram, therefore it is called a "Lin-Log" spectrum.
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Fig. 5.8 Two Simplifications of Basic Rear Axle Driveline Load Spectra
* Some typical load spectra for the driveline torque have been measured; *
* two typical routes may be distinghuished: Test Routes and Transport Routes. *
* A certain fraction of the engine power is applied to accomodate the spectra. *
* A comparison between measured and calculated spectra showed a good *
* correlation. *
* Many calculated driveline load spectra have a similar appearance, therefore *
* it was possible to develop two basic types of driveline load spectrum. *
* These two types have been styled to simple spectra, that can be described *

* mathematically.
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5.6 Equivalent Torque for Simplified Load Spectra.

Both simplified and basic driveline load spectra can be expressed mathematically as a
continuous loadspectrum. This mathematical expression for the driveline load spectrum can
then be coupled with a given fatigue damage acccumulation theory. In this way, the
severeness of the spectrum can be determined, that is expressed by the equivalent torque.

On basis of the damage accumulation theory, it is possible to determine the equivalent torque
of a load spectrum that is given as a continuous function. This equivalent torque is
representative for the fatigue damage of the complete load spectrum and can be used to
make an estimate of the expected gear service life. It also serves as an indicator for the
severeness of the loading spectrum. It can be expressed as:

1

Tea (1, f(m)k*dw (5.1)
Tmax Neo Tmax

According to the theory of Palmgren-Miner, only the torque values higher than the endurance
limit are assumed to have a contribution in the damage accumulation. According to Corten-
Dolan, all torques have a contribution in the total damage, that are weighed by one and the
same exponent that is determined by the slope of the SN-curve. Torques with values that are
lower than the endurance limit, contribute in a comparable way to the cumulative damage
than torques that are higher than the endurance limit. The equivalent torque that is
determined in this way will generally lead to lower life estimates than when determined
according to Palmgren-Miner. In other damage accumulation theories, such as Haibach-
Gatts, stresses lower than the endurance limit contribute to the total fatigue damage in a
restricted way.

When the mathematical expressions for the loading spectra are written in the general
expression for the equivalent torque, formulations are generated by which the ratio of the
equivalent torque to the maximum torque is given only as a function of the slope of the SN
curve, indicated by k, and the ratio of minimum to maximum torque of the load spectrum.

The ratio of the minimum to maximum torque of the load spectrum is indicated by:

Tmin
T

max

¢ = (5.2)

For both basic loading spectra, the “Log-Log” and “Lin-Log” spectrum, the expressions for the
equivalent torque have been determined by applying the damage accumulation theory of
Corten-Dolan thereby implying all torque levels.

Figures 5.9 and 5.10 show the ratio of the equivalent to the maximum torque as a function of
the slope of the SN-curve. The parameter in the graphs is the ratio of the minimum to the
maximum torque of the load spectrum. The damage accumulation theory according to
Palmgren-Miner allows a closed analytical expression for the equivalent torque to be derived.
Modifications on the cumulative damage theory, such as Haibach-Gatts, only allow relative
complex analytical formulations.

The equivalent torque for the "Lin-Log"-spectrum is mathematically rather complicated; this
can only be calculated using a recurrent expression [5.5] that has been derived in Appendix
5.1. The analytical expressions and it's graphical representation are given here.
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5.6.1 The “Log-Log” Spectrum
The mathematical expression for the "log-log”-spectrum is:

_ logp
log T(N) = logT . + M*IOQN (5.3)

The equivalent torque for the "Log-Log"-spectrum is described as (Appendix 5.1):
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Fig. 5.9 Equivalent Torque Fraction for “Log-Log” Spectrum
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5.6.2 The “Lin-Log” Spectrum
The mathematical expression for the "Lin-Log"-spectrum is:

1 -
TN) =T, +[1 —I(_OE;VL)*IOQN] (5.6)

oo

The equivalent torque for the “Lin-Log” spectrum is described as (Appendix 5.2):
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Fig. 5.10 Equivalent Torque Fraction for a “’Lin-Log” Spectrum
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5.6.3 Evaluation of Equivalent Torques for Load Spectra

The values for the equivalent torques that have been determined by these two methods may
be considered as an overestimate for truck applications, because the applied theory for
damage accumulation also incorporates the damage of torques being lower than the
endurance value. For the driveline load spectra that have been generated, the following
general dimensionless values may be used:

*¢ = Thin/ Trmax = 0.05 - 0.20

* Slope SN-curve =7 - 9.
The slope is valid for the fatigue bending failure of hardened case carburised gear materials
and normal failure probabilities. The minimum torque is the required torque for a vehicle
speed of about 70 km/h on a flat road. The maximum torque is required for driving the vehicle
uphill along a 15% slope. This is the same value as the maximum torque that is defined in
chapter 6, as being a function of the crownwheel outerdiameter.

Based on the equations of this part, the following values for the equivalent torque ratio may
be used:

* International Transport: Teq = (0.20-0.25) * T

* National Transport: Teq = (0.27-0.33) * T
The lower values are based on the "Log-Log" spectrum; the higher values are based on the
"Lin-Log" spectrum. This means that an equivalent rear axle torque of about 20 to 25% of the
maximum torque may be regarded as representative for International Transport, whereas for
“National Transport” the equivalent torque is 27 to 33% of the maximum torque.

In [5.7] synthetic loading spectra have been developed that can be applied for automotive
use. This type of load spectrum is described as:

1
log m
T N
- [—™] (5.9)
Tmax |Og max
min

In the description of these spectra, m is supposed to have a constant value.

Both simplified load spectra of the previous part have been compared with this synthetic
spectrum; they appear not to correlate with each other. in order to fit the simplified loading
spectra with the spectrum of equation (5.9), the parameter m had to assume different values
for different cumulative distance fractions. When using this synthetic load spectrum for
describing several vehicle routes, the following values for m may be used then:

* International Transport: m=0.7-0.9
* National Transport: m=09-1.1
* Test Routes for trucks: m=11-1.5
* Test Routes for cars: m=15-2.0.

For these synthetic load spectra, also expressions are given for the equivalent torque ratio.
These are however only valid for parts of loading spectra with a lineair behaviour in a dubble
logarithmic diagram. The equivalent torques, calculated with the expressions of [5.7] may
then be compared with the equivalent torques, calculated according to the just derived
equations for a "Log-Log" spectrum. The results are given in the following table, where the
slope of the SN curve is assumed to be k = 9.
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For high values of T(min) / T(max) of the load spectrum, the difference in calculated
equivalent torque between both methods is relatively small. For relatively light spectra, where
the ratio of maximum to minimum torque is less than 0.15, the difference increases. As the
self derived equations assume no endurance limit, the calculated equivalent torque will here
be higher than calculated according to [5.7].

In [2.7] and [2.8] the gear performance torque may be regarded as the equivalent torque for a
given vehicle specification. This gear performance torque is based on the performance ratio
for vehicles; it is dependent on the vehicle gradeability and the road type. The performance
ratio is based on a relation between the maximum engine torque and the vehicle weight.

In itself, a ratio between engine power and vehicle weight would be better to be expected.
The values from [2.7] and the expression from chapter 6, where the ratio between maximum
output torque and vehicle weight is equal to unity, are combined here. This means that the
value for the performance to the maximum torque may be written as:

Teq
- = (0.20+0.40) (5.10)
max

It appears that the derived equations for the equivalent torque ratio are in line with other
sources, although at the last one, the variation in the numerical value is relatively large. When
the recommended values for domestic or foreign highway, city or inter-urban busses are
used, an expression for the required performance torque as a function of the vehicle GCW
may be given. The maximum possible variation of the values of these parameters may lead to
a variation of the gear performance torque by a factor of 2.5, even within every vehicle
application. Therefore it will only be used as a guideline for a first order determination of the
general gear dimensions.

* Simpilifications of two typical vehicle driveline loading spectra have been *
* developed, the “Lin-Log” and the "Log-Log” spectrum. *
* Both load spectra have been mathematically described. *
* Based on the damage accumulation theory of Corten-Dolan, expressions *
* for the equivalent torque have been derived. *
* For these load spectra and case carburised gear materials, the ratio of the *

* equivalent torque - to - maximum torque lies between 0,20 and 0,33.
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5.7 Variable Amplitude Endurance Tests
5.7.1 Results of Variable Amplitude Tests.

On one axle type, crownwheeldiameter 445 and axle ratio 4.10, two series of Variable
Amplitude tests based on load a spectrum have been performed. For each spectrum, a total
of four gearsets has been tested. The load spectra were of the “Lin-Log™-type, although not
continuous; the continuous spectra have been approximated by several discrete torque
values that were kept constant during a limited time interval. Therefore the test was referred
to as a "Block"-test. Only one basic type of loading spectrum has been used; both spectra
had different values for the torques, although they differed only slightly. They are indicated by
LOW and HIGH, referring to the level of the torque. The LOW spectrum consists of 5 torque
levels, the HIGH spectrum has 7 levels with each torque level a small variation of the actual
torques to about maximum 5% of the actual value. The graphical representations of the load
spectra are given in figure 5.11.
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Fig 5.11 Load Spectra in Block form for Variable Amplitude Loading

Three gearsets of both series have been running until the same testrig stopping criterium of
the constant amplitude tests became active. Out of each serie one set was stopped earlier for
inspection purposes, which also would give some indication on the crack initiation. The
general level of the testing spectra was such that failures were to be expected within a limited
time, as the major part of the spectrum torques is higher than the endurance torque. The
general level of both loading spectra is appreciably larger than what is to be expected under
normal or even heavy vehicle conditions. This has been done in order to provoke tooth root
fracture, similar to the constant amplitude tests. The results of the variable amplitude tests
are summarised in Attachment 5.7, together with the actual torque values.
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As can be seen in the table of the testresults, the failuretypes of the Variable Amplitude tests
differed from the failuretype of the constant amplitude tests. Whereas the Constant Amplitude
tests at high torque level showed very predominantly tooth root fatigue failures on almost all
samples, the results of the Variable Amplitude tests showed a mix of principal gear failures.
Here a beginning type of surface failure in the form of pitting or even spalling could clearly be
examined. On several pinions, breakage of the upper part of the tooth and even cracks in the
root could be observed. A type of surface failure may have been generated by the lower
torque part of the spectrum. As a result of the stress rising effects of failures on the tooth
surface, part of the teeth have been broken when larger torques are applied. These large
torques would normally give lesser damage if the teeth had not partly been damaged by
surface failure at an earlier stage. Both torque levels next higher to the endurance torque are
responsable for more than half of the calculated damage at the HIGH load spectrum. The
statistical representation of the results for both variable amplitude tests with LOW and HIGH
Load spectra are given in fig. 5.12, for an assumed lognormal failure probability distribution.
Because of the limited number of samples, these values should be considered with care.
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Fig 5.12 Statistical Evaluation of Variable Amplitude Tests

It has been observed that the point of crack initiation lies at about 75-80% of the total
registered number of test cycles. This percentage of crack initiation relative to the gear life
only counts for small cracks that are visible. The actual occurence of crack initiation will be on
a smaller number of cycles. This fraction has not been determined, as this goes beyond the
scope of this work. The fact that a clearly and visible crack could be observed at less than
about 75 % of the total endurance life, is consistent with the findings during the Constant
Amplitude tests. There the impression existed that at about more than 65% of the registered
endurance life, a visible crack initiation had been taken place. This was found by using an
endoscope to examine the gear surface during intermediate inspections.

The ratio of the cycle numbers at 90 to 10% failure probability of these tests has been given
in fig. 5.13, together with data for the Constant Amplitude load tests of the four axle types.
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In this diagram, other data are also given for reasons of comparison. These data have been
derived form [4.7], [4.10] and [4.11]. It shows that for the very limited number of test samples
for the Variable Amplitude tests, the ratio of cycle numbers for 90% to 10% failure probability
lies well within the range of other endurance tests.

As the variable amplitude tests have only been performed with a very limited number of 4 test
samples each, the statistical evaluation is to be considered here with some caution.
Nevertheless the results are considered to be statistically viable and they are therefore used
for further analysis and comparison with calculated endurance data.
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Fig. 5.13 Ratio of N90 / N10 for Different Stress Levels

5.7.2 Verification of Measured and Calculated Life at Variable Amplitude

The expected pinion life has been calculated for both loading spectra of the Variable
Amplitude tests. Both the linear and the non linear stress/torque relations, together with the
accompanying endurance values of the Constant Amplitude tests have been used here. The
life calculations have been performed for three well known cumulative damage theories,
namely according to Palmgren-Miner (PM), Corten-Dolan (CD) and Haibach-Gatts (HG).
Generally these theories will lead to differences in calculated pinion life. As the theory
according to CD includes all loading levels, the calculated endurance life will be lower than
the calculated life expectancy according to PM, which only accounts for torques higher than
the enduarnce limit. Calculated load cycles according to HG will lie in between the results
ofboth mentioned theories.
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The results of the calculated life expectancy for both spectra HIGH and LOW are given in
figures 5.14 and 5.15, together with the actual realisations of the tests. The calculated values
are given for three failure probabilities, 10, 50 and 90 % as well as for the three applied
damage accumulation theories CD, HG and PM. In these graphs, also the distinction is made
between the linear and the non-linear stress/torque relationship. For the linear stress/torque
relation, the material values of Table 4.6 have been used. For the non-linear srtess/torque
relation, the values of Table 4.9 have been used. These data are based on the results of the
constant amplitude tests. The relatively small difference in the calculated endurance lifes for
the three theories is mainly a result of the spectrum, of which allmost all torques are higher
than the endurance torque of the gears.
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Fig. 5.14 Calculated and Actual Results for “High” Load Spectrum

For both spectra, the actual registered lifes are lower than the calculated ones, for both the
linear and non-linear stress/torque relationship. The non-linear stress/torque relation however
gives the best correlation between calculated and registered pinion lifes for the 10% failure
probability for both spectra of the Variable Amplitude tests. In this way, the non-linear
stress/torque relation gives an improvement compared to the linear relation. These results
confirm the preference for a non-linear relation in stress/torque. For the 90% failure
probability the difference between linear and non-linear torque/stress relation is small. This is
however a probability value that is not interesting for design purposes.

The damage accumulation theory according to Corten-Dolan (CD) here gives the best fits for
all three failure probabilties of 10% and 50%. This has also been observed by [4.7].

For the Constant Amplitude loading, the difference between calculated and actual pinion lifes
for the 445 axle are lower than plus/minus 5% for the 10, 50 and 90 % failure probabilities,
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when a non linear stress/torque relation is assumed. For the linear relation, the difference
between calculated and actual pinion life is less than 8% only for the 10 % failure
probabilities; it is between 10 to 20 % for higher failure probabilities.

For the Variable Amplitude loading of this axle, the differences between calculated and actual
gear life are about 13% for a 10% failure probability and a non-linear relation between stress
and torque. The differences between calculated and actual pinion life are larger for the
variable amplitude loading cases than as for the constant amplitude loading. The reason for
this may be decrease in the fatigue behaviour of the material.
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Fig. 5.15 Calculated and Actual Results for “Low” Load Spectrum

Generally it can be said that for variable amplitude loading, a mix of pinion failure may be
expected. This is at least valid for the case of relatively high load spectra. Mostly some kind
of surface failure will first be generated, in the form of pitting or spalling. This will hardly have
any noticeable detrimental effects on the gears, but it will be an premature initiation for other
failures such as root breakage. In some cases they may be combined with partially tooth tip
breakage, caused by the stress effect of pittings at high torques.

These effects will lead to a reduction of the endurance values that have been established
during constant amplitude load testing. This means that the actual registered fatigue life at
variable amplitude loading will be smaller than when calculated by using the endurance
values of constant amplitude loading. For the "LOW" spectrum, the required decrease in
endurance strength would be relatively low with about 2.5%. For the "HIGH" spectrum, the
reduction in the endurance fatigue limit would be about 5% for a 10% failure probability and
about 10% for 90% failure probability.
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It would mean that for Variable Amplitude loading, the endurance limit of the gear material
that has been established at Constant Amplitude loading, would require a correction to
account for this reduction in endurance strength. The results are given in Table 5.1.

When comparing this table with the endurance data from the earlier established tables, it is
striking that for the 10 % failure probability, the values are identical. This is an indication that
the non-linear stress/torque relation is valid for a Constant and a Variable Amplitude loading.

Failure Endurance Slope Knickpoint

Probability Limit SN-curve N,
[%] [N/mm2] [l []

1 665 7.50 3*10°

5 700 7.75 3*10°

10 720 8.00 3*10°

50 790 8.75 4+*10°

90 850 9.50 5*10°

95 870 9.75 5*10°

99 900 10.0 5*10°

Static Limit 2125 - 1*10°

Table 5.1

Endurance Data as established from Variable Amplitude Testresults
for a non-linear stress / torque relation

In fig. 5.16 the values for the endurance limit in relation to the failure probability are
graphically represented. It shows the change in endurance value when going from a linear to
a non linear stress/torque relation at Constant Amplitude loading, as has been derived in the
previous chapter 4. Included are also the values for the endurance limit for a non linear
stress/torque relation at Variable Amplitude loading. This is mostly a result of the variation in
service life for the 90 and 10% failure probability, that differs between the constant and
variable amplitude load tests. Further tests are required however in order to statistically
establish if a correction is required for a higher number of testsamples.

In fig. 5.17 the values for the slope of the SN-curves are represented. It shows quite clearly
that for a non linear stress/torque relation, the k-factors come much more in line with those
from helical gears of the same material. When fitting the calculated with the registered
service life for Variable Amplitude loading, the k-factors for variable and constant amplitude
loading could remain unchanged. As this was only possible with a non linear stress/torque
relation, this non linearity gives mathematically and physically a far better agreement .

The reduction in endurance strength might be the reason for the fact that here the damage
accumulation theory of Corten-Dolan CD gives the best correlation between calculated and
actual pinion life. Normally for gear applications the Haibach-Gatts theory is applied.
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It may well be that in some cases the theory of Corten-Dolan gives the best correlation
between measured and calculated life cycles, whereas in other cases the theory of Haibach-
Gatts gives the best results. This may well depend on how the load spectrum is situated in
relation to the SN-curve, more precisely to the endurance limit.

Some loading spectra may have theoretically by far the most damage for root fatigue than for
surface fatigue and are thus very heavy with regard to root fatigue failure. This may be the
case when gears have a relatively small module and large teethnumbers, for reasons of noise
production. These gears may obtain easily premature gear flank surface damage by some
loads of the spectrum. This may reduce the root fatigue endurance values determined at
Constant Amplitude loading. In that case the theory of Corten-Dolan may give the best
correlation between calculations and tests. Still then, an additional reduction of the endurance
limit may occur. This may be different for loading spectra that theoretically have for instance
comparable damage contents for root and for flank fatigue. Here the theory of Haibach-Gatts
may well be suited the best.

In general it may be stated that the severeness of a loading spectrum in relation to the
endurance limits of the gear geometry and the material, will determine what damage
accumulation theory is the best suitable for life predictions.
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* Although there is only a little difference in the torque values between both
* spectra HIGH and LOW, both calculated and registered lifes indicate a
* significant difference.
* The actual life is less than the calculated pinion life; about 15% lower
* values for both the LOW and HIGH at a 10 % failure probability.
* The life expectancy calculated according to the theory of CD gives a better
* correlation to the test results than the PM and the HG theory.
* Early surface failures at variable amplitude loading may lead to a reduction

in the endurance limit that has been established at a constant amplitude loading.
This effect of different failures accelerating the dominant failure type is
designated here as “failure interference’.

The effect will depend on the severeness of the load spectrum in relation

to the endurance limits of the gears.

A non linear stress-torque relation gives remarkedly smaller differences
between calculations and realisation also for Variable Amplitude loading.



5 Driveline Load Spectra for Truck Applications 125

5.8 Resumee

Several measured driveline loading spectra for rear axle gears have been discussed and
evaluated. Generally two types of driveline load spectra can be distinguished: Transport
Routes and Test Routes. For heavy and hilly Test Routes about 65-70% of all load cycles is
on the Drive Side of the gears, whereas this amounts to about 90% for Transport Routes.

The engine power, or a fraction of this, can be seen as representative for determining the
loading spectrum. With this the dimensioning of rear axie gears at the initial design may be
simplified when the vehicle GCW/GVW and the engine power are known.

The comparison between a measured and a simulated load spectrum shows a difference in
driveline torque of less than 10 % for normal torque values. For large torques, the difference
increases. In view of the variation in measured load spectra, this difference is acceptable.
Here, deterministic actions such as gear shift and accelerations with smaller occurrences
than 10 to 10° distancefractions are not measured.

Calculated driveline load spectra for most truck applications may be simplified by two basic
forms. These are the "Log-Log" and the "Lin-Log"-spectrum. The first one is suitable for
Transport Routes, whereas the second describes Test Routes.

Both spectra have been described mathematically and expressions have been established for
the equivalent driveline torque. The equivalent torque for International Transport Routes is
about 20 to 25% of the maximum torque. For National Transport this value is about 25 to
30%.

Endurance life tests with Variable Amplitude load have been performed on a limited number
of sample gears of one axle type. The damage type that occured with these Variable
Amplitude loading differs from the damage at Constant Amplitude loading. At Variable
Amplitude loading generally a mix of failures can be expected, where one failure type may
accelerate another failuretype. In this case the appearance of light surface damage may well
have accelerated tooth root fatigue. This aspect, which is defined as “failure interference”
may be the cause for a reduction in the endurance limit that has been established at a
Constant Amplitude loading.

Pinion life calculations for Variable Amplitude load spectra, with a non linear relation between
stress and torque assumed, showed a far more better agreement between calculation and
realisation than with a linear stress/torque relation, especially for the 10% and 50 % failure
probability.

At 10 % failure probability the calculated pinion life is about 15 - 20 % higher than the actual
realisation, when the non linear stress-torque relation is applied. For a linear stress-torque
relation, the difference between caiculated and actual pinion life is about 75 - 100 %.

This shows that also here the non-linear stress/torque relation gives a clear improvement in
the predictability of life calculations.

The damage accumulation theory according to Corten-Dolan gives the best agreement
between the actual registered life and the calculated life. A reduction on the endurance
fatigue limit, established at Constant Amplitude load, would then still be required in order to
match calculation and realisation.

These results are based on a very limited number of test samples, therefore the conclusions
should be considered with care and further investigations are required.
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6 SCALE LAWS AND GENERAL. DESIGN FOR REAR AXLE GEARS
6.1 Introduction

Mostly rear axles are manufactured in a range of dimensions in order to cover a wide field of
applications. It would be very helpfull if a range of axles could be designed, using a scale law for
automotive rear axle gears. In the general applications of technical products, produced and
manufactured by man, one can distinguish a relatively large scale of dimensions. For these
technical products, in particular mechanical engineering elements, the dimensional scale ranges
from several millimeters for the so-called fine mechanical elements to several tens or hundreds
of meters for large oilrig platforms or supertankers.

In the first part of this chapter, an analysis will be given on the characteristic dimension of rear
axle gears, the gear diameter, and its dependency on a vehicle related value. A study will be
performed to determine a simplified scale law for a wide range of rear axle gear dimensions.
Secondly, a comparative analysis will be given on other mechanical parts that transmit torque
or power. Here it will be shown that in principle the same scale law is valid as is for automotive
rear axle gears. In the third part, a comparison with Nature will be made, where some scale laws
are considered and compared with those of rear axle gears.

Finally a short review will be given on a general design procedure that may be used for the
preliminary design of rear axle gears. On basis of the aspects that have been delt with in the
previous chapters, it is possible to give some directives or guidelines for a general gear lay-out.
General dimensionless factors can be used to determine the basic gear geometry data, for a
given vehicle- and application description is the starting point. Secondly, a further specification
will be required in terms of fine tuning the gear design for customary automotive design practice.

6.2 Scale Laws for Bevel and Hypoid Rear Axle Gears
6.2.1 Gear Diameter versus Output Torque

For single stage gear drives with cylindrical or helical gears, the centredistance is the main and
governing feature that determines the general dimensions [6.1]. For bevel and hypoid gears the
gear outer diameter is the determining value for the overall dimensions. Not only does this
diameter determine the overall rear axle lay-out, the dimensions of the rear axle casing are also
determined by it. As a result of this, the axle weight and costs mainly will be governed by the
choice of the gear outerdiameter. Also, important vehicle features such as ground clearance,
vehicle suspension dimensions as well as restraints are determined by this overall gear
dimension.

It is possible to derive, purely on a theoretical basis, a relationship between the gear outer
diameter of bevel and hypoid gears and the output torque. This can be done by rewriting the
basic formulations for the strength calculations. Here, a geometrical similarity of the gears is
assumed which means that the ratio of facewidth to gear outer diameter is constant. Also, the
ratio of vertical pinion offset to gear outer diameter is considered constant, as is the teeth
number of the gear.
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Then the following relationship between gear outer diameter and output torque can be
established:

dy=Cpy*Cy+Cx T, (6.1)

In this expression, ¢, is a material related parameter that is determined by the type of the gear
material and its heat treatment. The parameter c, is geometry related and its value is determined
by gear geometry data such as facewidth, spiral angle and teeth numbers. The value ¢, is load
related and depends on dynamic effects and actual service loads. These constants can be
specifically dedicated to tooth root failure and tooth surface failure, leading to the following
expressions:

For Tooth Surface Failure:

_ 113
dez“CmH*CgH*C/H*Tz (6.2)

For Tooth Root Failure:

d_=C F*CgF*C,F*T;/?’ (6.3)

e, m

Attachment 6.2.1 gives the derivation of the above expressions. The values of all parameters are
different, depending on tooth root failue or tooth surface failure. Also for a static or a continuous
loading they will differ.

When a minimum/maximum analysis on specific gear geometry and material data is applied, it
is possible to determine the range of the constants. This analysis is based on the general
variation of gear geometry data in terms of teeth number, gear ratio, spiral angle and facewidth,
that may be encountered on typical automotive rear axle gears. The material under consideration
is case carburised gear steel, since for highly loaded gears this type of material is commonly
used in automotive applications.

Tooth Surface Failure.
For the surface failure mode, the generalised expression becomes:

‘ 2,.[i2
d_,-12.6+] Sy 1234 (N2)+y/i*+1 J¥3H[MK] "+ T,
OH*anat &1 _E*Sinﬁz)z*q)

(6.4)

At a static maximum torque, with plastic deformation on the tooth surface, the expression yields:
deo=(7 = 17.5)xT, * (6.5)

At the endurance or continuously applied torque, where fatigue of the surface layers may occur
in the form of pitting:

d,,=(8.5 + 21 .5)>'<T2m1’3 (6.6)
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Tooth Root Failure.
For the tooth root failure mode, the generalised expression is:

S nyxz
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At the static maximum torque, where mostly a brittle fracture of the teeth may occur, the
expression is:

d,,=(11.5+16)«T, 1 (6.8)

At the endurance or continuously applied torque, where fatigue breakage of the gear teeth may
occur, it is expressed as:

d,,=(15.5+21) sz”3 (6.9)

A comparison of the required diameter at a given output torque for the surface and the root
failure mode, shows that the largest diameter is required for tooth root failure.

This seems to be the determining gear failure, at least in the use of case carburised gears with
geometries as determined in Attachment 6.2.1. The only exception are gears very small teeth
numbers and small spiral angles.

Having established that tooth breakage is the determining criterium for the gear outer diameter
on basis of this analytical exercise, it still remains to be established whether a static or a
continuous loading is the decisive loading situation for gear dimensions. As has been shown in
chapter 5.6.3, the average ratio between the continuous or equivalent torque and its maximum
value for generalised rear axle gears load spectra in automotive applications can be described
by the following expressions:

T

€9 - 0.20 + 0.25 for International Transport (6.10)
max
T
€9 - 0.27 = 0.33 for National Transport (6.11) -

max

The ratio of the static allowable stress to the endurance limit for case carburised steels is about:

o
_Feont50.35 (6.12)
Of

max

It is obvious that in the cases considered, the ratio for torques is always lower than the ratio for
stresses. This would mean that for case carburised materials the gear outer diameter may
considered to be mathematically determined by the failure mode of static tooth breakage of the
pinion at the rear axle maximum output torque.
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The values of the gear geometry data on which equations 6.4 to 6.9 are based, are extremes for
the minimum-maximum analysis. If several gear geometry variables are limited to those values
that are more likely encountered in automotive industry, than equation 6.8 will yield a smaller
variation:

dp=(12 + 14)+T, 17 (6.13)
The lower values of the constants are for hypoid gears; the larger ones are for bevel gears.

Here, the maximum gear outerdiameter of a bevel or hypoid gear set is directly determined by
the value of the maximum gear output torque.
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Fig. 6.1 Gear Outer Diameter and Maximum Output Torque for Rear Axle Gears

Fig. 6.1 shows the relationship that CAN be drawn between gear outer diameter and maximum
gear output torque for several axles. The dimensions of the gears range from about 130 mm to
500 mm, which is a variation of about 1:4. It is valid for vehicles, equipped with single driven rear
axles. This graph is based on data that can be derived from information leaflets of several rear
axle manufacturers [6.2] and cover the period 1990-1995. As can be seen, almost all data lie well
between the theoretical established relationship between gear outerdiameter and maximum gear
output torque. Therefore it may be concluded that this theoretical relationship may be considered
as reliable and representative.



130 6 Scale Laws and General Design for Rear Axle Gears

Most of the rear axle data refer to the vehicle weight, indicated by Gross Combination Weight
GCM or Gross Vehicle Weight GVM. In that situation a translation has been made from
GCM/GVM to maximum output torque. It appeared that is was possible to derive the following
relationship between maximum output torque and vehicle weight:

T, =T xGCWIGVW (6.14)

max

This implies that the maximum output torque for a solo rear axle, that is required to determine
its gear outer diameter, CAN directly be related to the vehicle mass. For trucks, the value of this
coefficient is about unity; in other words for each tonne vehicle weight 1 KNm of output torque
is required at the wheels. For hubreduction axles, the wheel torque needs to be divided by the
ratio of the hub reduction, in order to obtain the gear torque. Note that the influence of wheelspin
is not included here. For busses and coaches, the value of Gamma is about 0.85. For small
commercial vehicles and vans, the value of Gamma lies between 1.10 and 1.35. Fig. 6.2 gives
a representation of this relationship.
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Fig. 6.2 Relation between Gear Output Torque and Vehicle Weight

In general terms, this comes down to a rear axle output torque for driving a vehicle upgrade on
a slope of 15%. Then a calculated safety factor of 2.0 to 2.5 for static breakage of the gear teeth
will prevail in this situation. No influence is required here on the vehicle application, the required
endurance life as well as the reliability and it's failure probability. These factors, of course will
have to be taken into account by fatigue calculations at the final design for Proto Release. The
relationship introduced here is only based on general data; therefore it only represents a general
view. Aspects as axle standardisation and use of one and the same driving head for different
vehicle types, may cause individual designs to deviate from this relationship.

It is NOT concluded that all gear diameters ARE designed on this base, but it is striking that this
simple relationship CAN be drawn for such a wide variety of gear dimensions and rear axle
manufacturers and vehicle applications.



6 Scale Laws and General Design for Rear Axle Gears 131

6.2.2 Comparison with Existing Design Guidelines

In order to verify this striking simple relationship between gear outer diameter and maximum
output torque for a large variety of dimensions, a comparison may be required with existing
design rules. In order to make sure that a reference still exists with actual practice, the general
guidelines, as used by two well known companies in the manufacture of automotive bevel and
hypoid gears, will be compared.

Gleason
Several design directives published by this company for the preliminary design of automotive
vehicle rear axle gears [6.3] to [6.6] give a graphical representation between gear outer diameter
and an endurance torque. From the graphs where tooth root breakage is involved, the following
mathematical relationships can be established.
For bevel gears:
dep=(19.0421.5)+T, " (6.15)

t

For hypoid gears:
dezz(18.0+19.0)*T2 3 (6.16)

t

Here, the relation between gear diameter and torque is based on a continuous torque or a gear
performance torque, where it seems that endurance loading may be determining the failure
rather than an overloading only occurring once. This gear performance torque is based on a so
called performance ratio for vehicles [6.4]. It is dependent on the vehicle gradeability and the
road type.

When the recommended values of this guideline for domestic or foreign highway and city or inter
urban busses are used, it is possible to give an expression for this required performance torque
as a function of the vehicle GCW. The continuous torque may be rewritten into a maximum
torque, which leads to:

Tzconr:(0.20+0.60) * szax (6.17)

As can be seen, this leads to a variation by a factor 2.5 to 3.0 for the gear performance torque
within every vehicle application. This variation is too large for a good comparison with the
equations that have been derived. It is only used as a guideline for first order determination of
the gear outer diameter.

As has been shown in chapter 5.5, ratio between the maximum and the continuous or equivalent
torque can be establish, based on a general pattern of loading cycles for automotive applications
and a constant slope of the SN-curve for the gear material.

This relation is:
Tz

=T, =(0.20-0.25-0.30)+T, (6.18)

equivalent con,

If the mean value, namely 0.25 is substituted in expressions 6.15 and 6.16, these equations can
be rearranged in the following manner:
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For bevel gears:

d82:(12.0—13.5)*T2maX1’3 (6.19)

For hypoid gears:
d,,=(11.0+12.0)+T,_ 73 (6.20)

Oerlikon
Here, also several diagrams are given that are intended specifically for vehicle applications and
may only serve as guidelines for a preliminary design [6.7] . If gear teeth numbers of about 40
are assumed, which is normally the case for automotive applications, the following relationships
can be determined from these diagrams. For bevel gears in commercial vehicles, based on a
torque that is representative for required gradeability:

d,,=(20+25)+T, 1" (6.21)

Hypoid gears for passenger cars, based on the same continuous output torque, yield:

d,,~(18+20)+T, 13 (6.22)

If the same value for the ratio of continuous to maximum torque, 0.25, is substituted in both
equations according to Oerlikon, then they become:
For bevel gears:

d_,=(12.5+13.5) *szax1’3 (6.23)

and for hypoid gears:
d,,=(11.5+12.5) *szaxm (6.24)

It becomes obvious that there is a good agreement between both design guidelines and the
theoretical estimated relationship between gear outer diameter and output torque. Furthermore,
it can be seen that there is hardly any difference in gear dimensions, when they are designed
according to the considered guidelines. This is an indication that the derived relationship can be
considered as a fair accurate and a practical way of determining the gear outer diameter for solo
rear axle gears.

In general there is a difference between hypoid and spiral bevel gears. For a given loading, the
gear outer diameter for bevel gears is about 10-15% larger than for hypoid gears, if the same
loadability is assumed. For a given dimension, hypoid gears would have a 12% higher torque
capability than spiral bevel gears. The difference in torque capacity between Gleason and
Oerlikon guidelines may be considered to be minimal. If also the variation for safety factors and
definition of output torque is taken into consideration, one may state that both type of gears will
have comparable loadability. This is of course valid for gears with identical gear quality, heat
treatment, material and geometry. The guidelines of Klingelnberg are not used in this
comparison, since these are not directly comparable to the same standard as the others do.
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6.3 Scale Laws in General

For rear axle gears, a relationship has been established between the outer diameter and the
vehicle mass. The question may rise whether this can be considered as a unique situation or that
more and comparable relationships do exist where the independent variable is output torque?
In order to answer this question, further similarities will be investigated on other gear drives.

6.3.1 Scale Laws for Gear Drives

For gear drives with spur or helical gears, the most characteristic dimension is the centre
distance, that is determined by the gear ratio and the diameter of the largest gear. Jaskiewicsz
[6.1] has shown that a typical relationship can be drawn between centre distance and maximum
attainable output torque for a range of Eastern European automotive gear boxes. In practical
applications, one may expect a certain variation on a theoretical derived relationship. Normally,
the choice of the value of centre distance will also depend on manufacturing or casting restraints
or even vehicle related packaging requirements.

In order to cover a wider field of applications, a survey has been made on several general
catalogues of gear-drive manufacturers. These are considered as being representative for
transmissions for automotive, marine and general industrial applications [6.9] and [6.10].

They consist of gear drives for:

* Automotive applications: gearboxes for passenger cars, medium and heavy road transport.

* Marine applications: gear drives for sea going vessels and river vessels.

* Industrial applications: highspeed gear drives and standard industrial drives.

When an extensive analysis is performed on the data, extracted from those catalogues, the
following relations can be drawn between the centre distance and the maximum output torque
for some typical gear drives [6.8].

Gear boxes for commercial vehicles / road transport:

a=(4.5+7.5)« T21’3 (6.25)
Gear boxes for passenger cars:
a=(8.0+9.0)+T,'"3 (6.26)

Industrial high speed gear drives:

a=(9.0+10.5)+T," (6.27)

Industrial heavy duty:
a:(12.0+13.0)*T21/3 (6.28)

Gear drives for sea going vessels

a=(14.0+15.0) T, (6.29)

Gear drives for river vessels:

a=(17.0+18.0)+T," (6.30)
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These relations have been derived from representative manufacturer catalogues that cover the
period of 1985 to 1993 [6.10]. These equations may however only be seen as generalised
indications for dimensions; they are comparable with the expressions of the preceeding chapters
(fig. 6.3). Despite these facts, some differences may however occur in the definitions for the
values of the maximum or the nominal output torque.

[SHIPPING

CENTRE DISTANCE [mm]
1 400

300

high_speed

2001

100+

[INDUSTRIAL APPLICATIONS

0 ' 5 ' 10 ' 5
max_OUTPUT TORQUE x107 (Nm] —

Fig. 6.3 Centre Distance versus Output Torque for several Gear Drives [6.8]

They are only valid for one-stage gear drives with a ratio of about i=2. For vehicle gearboxes, the
ratio of the so called "Konstante" of the intermediate shaft is about 2.5 to 3.5. Not only the values
of the constants in the above equations, but also the differences in the several regions of the
gear drives in fig. 6.4 indicate a relatively large variation in power density. Gear transmissions
for road transport in general have the highest power density. Because weight is an important
phenomenon in this application, extensive testing renders the possibilities of reaching the design
limits. Industrial gear drives, however do not have the same strict needs for weight; here service
and safety factors will be largely greater. Gear drives for ships will have to meet the regulations
of several classification companys such as Lloyds Register of Shipping, Det Norske Veritas etc.

The following theoretical and general relationship can be derived for all just investigated gear
drives between centre distance and output torque:

a=(5.0+18.0)xT," (6.31)
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In this case the determining failure mode is tooth breakage for static loading of case hardened
gear steel. The range in the value of the constants is achieved by a minimum/maximum analysis.
All these values are related to practical data, and it is striking to see that it covers almost
completely the entire range of gear boxes that are considered here. For reasons of comparison,
a relation between the output torque and the large gear diameter is required. Therefore the
expressions (6.25) to (6.30) will have to be rewritten. This is done by deriving the diameter of the
largest gear from the centre distance and the gear ratio. In this way a relation is obtained similar
to the expressions for bevel and hypoid gears in the previous chapter.

Gear boxes for commercial vehicles / road transport:

d,=(6.5+11.5)+T,"3 (6.32)

Gear boxes for passenger cars:

d,=(12+13)«T,"? (6.33)

Industrial high speed gear drives:

d,=(13.5+15.0)+T,"? (6.34)

Industrial heavy duty:
d2:(16-:-17.5)*T21/3 (6.35)

Gear drives for sea going vessels

d,=(18+20) T, (6.36)

Gear drives for river vessels:

d,=(22+24)=T,"® (6.37)

Planetary gear drives (last stage) for industrial applications:

d,=(13+14) T, (6.38)

6.3.2 Scale Laws for Mechanical Components

Similar to these gear drives, the survey has been extended to several mechanical components
that are used for power transmitting functions, such as couplings, shaft connections and low
speed hydraulic motors. The relevant data have been obtained from company's leaflets on
dimensions and allowable torques, that were published in a comparable period, of which the
relations between torque and gear diameter for gear drives have been established [610]. The
following equations have been derived.

Clutch plates for automotive couplings:

d=(40+46)+T,"? (6.39)



136 6 Scale Laws and General Design for Rear Axle Gears

Low speed hydraulic motors:

d=(20+25)+ T, (6.40)

Flexible couplings for industry:

d=(14+21.5)«T,'"® (6.41)

Geared couplings:
d=(9+11) T, (6.42)

Cardan couplings:
d=(6+10)+T,"3 (6.43)

Shaft-hub pressing connections:

d=(3+4.5)+T,"3 (6.44)

These relationships have been based on information from general brochures of several
component manufacturers [6.12], in a similar way as has been done by the gear drives. It may
well be possible that data of other manufacturers may differ from these expressions. This will
then be a result of differences in the designation of the output torque and the maximum diameter
[6.13] to [6.15]. The ratio of transmittable torque over the outer diameter gives an indication on
the torque density of the components. This ratio is calculated for all here considered mechanical
components, and given in fig.6.4, showing roughly a range of about 1000 in torque density.
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Fig. 6.4 Output Torque to Outer Diameter for several Transmission Components
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6.3.3 Comparison between Nature and Mechanical Components

The most interesting way of considering the influence of scale, is to study animals or mechanical
components being increased in size, while their shape or form in terms of dimensional ratio's
remains unchanged. Then geometric similarity, or isometry is considered. In ranges of
mechanical components, mostly this kind of isometry is realised. In Nature however, and more
specific in the case of land going mammails, this kind of isometry is not assured. The large
diversity of several kinds of animals with their specific forms and dimensions, makes it difficult
to determine scale dependent relationships on basis of geometric similarity. Only to a very limited
extent it would be possible to make an analysis on the influence of scale on several mechanical
and thermodynamical aspects of animals.

In the past some research has been performed into the similarity of animals in general, and more
specific into mammals. Some three hundred years ago Galileo investigated scale effects [6.16].
He found that Nature has two strategies for solving problems when the size of animals increase.
A change in the geometrical proportions of the animal mostly means shorter and thicker bones,
as well as stronger materials for the bones. As the latter has obviously strict limits, mostly the
geometry will be changed when the size of animals is increased.

Fig. 6.5 Scale Effect on Bones as seen by Galileo [6.16]

Figure 6.5 shows two bones for a man, according to Galileo: one for the current dimension and
one if that same person would be three times bigger than the current size. Generally allometry
will be encountered in Nature; whereas isometry can be expected in technical components. For
the best, a kind of isometry can be seen within a specific group of species. In the beginning of
this century the work of D'Arcy Thompson titled "On growth and form" [6.17] appeared in which
dimensional analysis and similarity criteria were introduced for general biology. Here, several
scale effects are discussed for locomotion of animals, on land in the sea and in the air. Other
investigations have shown several biological relations in terms of scale [6.18] to [6.22].

It appeared to be possible to mathematically describe different aspects of biological functions
of several animal species. This so called allometric concept gives several life functions of animal
species in the following form:

Y=cxM ¢ (6.45)

Here the body mass can be considered as the independent variable. The mass of mammals
ranges from several grammes for insects to the impressive weight of several tonnes for the
elephant. Fig.6.6 shows an example of an allometric expression [6.23], where the oxygen
consumption is plotted against the body mass.

In [6.24] a very extended overview is given of many biological similarity functions. Out of these,
two striking examples are taken that represent the most important cardio-vascular and respiratory
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functions of land going mammals. The first group is the heart delivery in terms of blood volume
per second and the heart power in gcm/min. The second group is the delivery of the lungs, being
the amount of oxygen in ml/min and the required lung power. Equations (6.46) and (6.47) give
the relationship of both groups with the body mass of animals. These expression only yield
validity for landgoing mammals. Birds and fishes, as well as mammals in the sea, are excluded.
One can very well see that the exponent of the bodymass M is less than unity and larger than
2/3. It appears as if this scale-influence is somewhere between the mass- and the surface
determining influence. In this view, the cardio-vascular and the respiratory functions of animals
are more related to the surface of the bones and/or the muscles. The pressure in the heart and
in the lungs remains constant over a wide range of animal sizes.

For the heart delivery and the heart power:

Qheart’'Dhean‘:Ca,b*,w0-73 (646)

For the lung delivery and the lung power:
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. 6.6 Oxygen Consumption versus Animal Body Weight [6.20]

In Nature, however there is hardly any case of geometrical similarity, where the ratio of I/d of
several important limbs remains constant over the size. Many mammals appear to maintain a
constant compressive stress in their bones or a constant tensile stress in their muscles when
increasing their size, by which the diamater of bones and muscles increases with the lenght 13
Within one and the same group of animal species, some kind of geometrical similarity or isometry
can be found. Here, the exponent of M has a value of 0.76 (=2/3). This means that the
dimensions of bones and muscles can mainly be described as being directly related to the animal
body mass. The stresses in bones and muscles appear to be constant and independent of the
animal body mass. In some respect, this is comparable to the gear dimensions of truck rear axles

in function of the vehicle mass. Here too, the stress in the gears is more or less constant,
irrespective of the vehicle mass.
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6.4 Basic Gear Geometry

Departing from a given vehicle application, the Functional Requirements for the rear axle gears
can be established, as indicated in chapter 1. These functional rear axle gear requirements will
be defined in terms of strength, noise, efficiency, weight and production costs. Together with the
design features, a first order design lay-out of the rear axle gears may be generated by
establishing the basic gear geometry. This basic gear geometry determines the general
dimensions of the rear axle gears and the most important basic gear characteristics such as
strength and noise production. The basic gear geometry can be determined by a limited number
of data. They are also based on general design guidelines for rear axle gears.

The basic gear geometry principally consist of the following parameters:

* Gear system: Gleason / Oerlikon / Klingelnberg.
* Gear type: Hypoid / Spiral Bevel.
* Gear geometry: Rear axle ratio i

Teeth numbers Z,/z,

Gear outer diameter d.,

Gear face width b,

Gear spiral angle Bz

Hypoid offset a,

Cutter radius re

To establish a reliable estimate on some of these lay-out determining rear axle gear
specifications, no direct knowledge on allowable stresses and pinion loading spectra is required.
Several dimensions are related to the gear outer diameter; a dimension that may be considered
as important for rear axle gears as the centre distance is for spur and helical gears.
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Fig. 6.7 Ratio of Facewidth to Gear Outer Diameter

First, the gear outer diameter can be established on basis of the vehicle GVW/GCW by using
figure 6.1. The value for the offset may be chosen from figure 3.1, bearing in mind the relative
reduction in pinion tooth root stress as indicated in that same chapter. The facewidth of the gear
may be taken from figure 6.7; here the facewidth in relation to the gear outer diameter is given
for some axles. As can be seen, this value is hardly independent of the gear outer diameter. In
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general the maximum facewidth is limited by about 1/3 of the outer cone distance, resulting from
manufacturing limitations depending on the gearing system.

The general qualification of the expected rear axle noise production generally is an important
feature. For this, the profile and the face contact ratio of the gears will have to fulfill certain
minimal requirements. It should be remembered that the noise generation of a gear set also is
strongly influenced by it's manufacturing quality. This aspect is not taken into account here, as
only geometrical requirements are to be achieved in the design phase. Figure 6.8 is a graphical
representation of geometrical requirements for the profile and face contact ratio of the gear
geometry, based on criteria of Gleason and Oerlikon for minimal noise requirements.
According to Gleason:

m2m2 > 2.0 (6.48)

From Oerlikon directives, the following can be derived for an effective facewidth of 90%:
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Fig. 6.8 Recommendations for Profile and Face Contact Ratio

In order to obtain a required face contact ratio, equation (6.50) may be used in which the face
contact ratio is expressed as a function of the independent variables of the basic gear geometry.
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This expression for the face contact ratio as function of the mean spiral angle, the relative
facewidth, the teeth number and the pitch angle of the gear, is represented in figure 6.9. The
relative facewidth is taken to be 0.15, as this is the facewidth that is most likely to be expected
(see figure 6.7). The gear teeth number varies between 40 and 45 teeth; the rear axle ratio varies
from 3 to 5.6. These values cover most of the automotive rear axle gears for commenrcial

vehicles.
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Fig. 6.9 Face Contact Ratio in function of Basic Gear geometry

Selection of the appropriate cutterhead diameter depends on the expected deflections and the
required contact pattern sensitivity. Investigations have shown that a gear curvature in the middie
of the facewidth, that is close to an involute spiral, generally gives the most favourable conditions
for the contact pattern sensitivity. One has to bear in mind that for circular cut gears machined
by the indexing method, the gear curvature is identical to the cutter head radius. For gears
machined by the continous method, the gear curvature differs from the cutter head curvature.
Fig.6.10 shows four different gear curvatures for a given cone distance and a mean gear spiral
angle. These are approximations of a hyperbolic-, a logarithmic, an Euler- and an involute spiral.
In order to achieve an involute, the following value for the cutter head radius should be chosen.

According to Gleason:
r, = (1.05+1.25)«R_+sinp,, (6.51)

According to Oerlikon:
r,= 1.05«R_xsinB_, (6.52)

c
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Fig. 6.10 Several Approximations of Gear Curvature

Most of the variables that describe the basic gear geometry, have restrictions in their minimum
and maximum values. The maximum pinion spiral angle is limited because of maximum allowable
bearing loads and deflections. The hypoid offset is limited because of restrictions in sliding
speed, scoring risk and operating temperature. The minimum gear spiral angle is determined by
a minimum required face contact ratio for noise requirements. This leaves only a limited region
for the designer to vary basic gear geometry data, as indicated by figure 6.11.
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Fig. 6.11 Limits and Available Field for Variation of Basic Gear Geometry
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6.5 Additional Gear Geometry

In order to determine the definite gear geometry, additional gear geometry data will have to be
established. This additional gear geometry consists of:

* addendum and dedendum height

* profile shift and tooth thickness factor

* pressure angle

* blade edge radius

* profile corrections, such as Protuberance or TopRem

* lengthwise and profile crowning.

The numerical values that are more commonly used for automotive rear axle gears and thus will
most probably be encountered, are summarised in figure 6.12. Here, the numerical values of
several geometry variables are given, next to some other data, relative to the mean normal
modulus.

The range of these values is purely to be considered as a guideline; some geometry variables
may differ from the values that are indicated here. On several occasions, company's intern
standardisation on tooling and manufacturing facilities may prescribe some practical values that
also may deviate from the values given here.

V 1vaLuE FOR m,, z1mm
1.50 7 1 Addendum factor
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Fig. 6.12 General values for Additional Gear Geometry Data

The rear axle gear stresses that are to be aimed for, depend on the vehicle application. The most
important features here are the expected vehicle travelling distance and the type of driveline
loading spectrum. The latter is expressed in the expected equivalent torque. Figure 6.13 gives
an indication of the general values that are to be expected for transport vehicles, as a function
of the vehicle weight.
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The severeness of the loading spectrum is expressed by the value of the equivalent torque.
Based on the expressions of chapter 5, they can vary between 0.22 and 0.30. Although the
values are only to be seen as indications; they can be considered as fairly representative values.
As can be seen is the value for the equivalent torque higher for vehicles with smaller weight.
These vehicles generally will have a more severe driveline loading spectrum than vehicles with
a large weight. This severeness of the spectrum relates to the maximum torque and is not to be
seen as an absolute value. Also low weight vehicles will travel by far a shorter technical distance
than vehicles with a high weight. In this view, the numerical value for the calculated tooth root
stress at the design stage of these gears will have a more or less constant value over the entire
range of the vehicle weight.
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Fig. 6.13 Vehicle Travelling Distance and Indication for Equivalent Torque

An interesting remark can be made however at this point.

A clear relationship between crownwheel outer diameter and maximum output torque has been
established for a relatively large range from about 100 mm to 500 mm gear outer diameter. Next
to this, the gear facewidth over the same diameter range also lies within a restricted bandwidth.
The results of the Constant Amplitude and Variable Amplitude Loading tests only have been
established for a restricted range of 410 mm to 485 mm crownwheel outer diameter.

Because of the functional and geometrical relationships that have been established separately,
it may be stated that therefore the experimental findings may be extrapolated down to diameters
of 100 mm. The restrictions are of course that the driving head casing layout, driving head casing
material, bearing type and arrangement as well as gear material and geometry are comparable
to the rear axle gears that have been tested here.
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6.6 Equal Life versus Equal Stress

In order to change the rear axle gear design in terms of required tooth root stress level for pinion
and gear, the profile shift factor x.,, is not applied here in the same way as it is for helical gears.
In many cases, it's value is restricted for hypoid and bevel gears by the following criteria:

* preventing undercut at toe side for small pinion teeth number

* limiting pinion tooth tip thickness on toe side

* optimal sliding for good lapping characteristics

* maximum allowable relative sliding for scoring.
To modify the pinion and gear root stress level on hypoid and bevel gears to a required level, the
tooth thickness correction factor is therefore applied. This additional geometry variable is used
for designing the pinion and gear in such a way, that either an equal stress or an equal life can
be achieved for both the pinion and the gear.

For relatively low loaded gears with a high safety factor and a high endurance life requirement,
such as industrial applications, it is common to design both mating members such that equal
tooth root stresses prevail. If however the gears are relatively high loaded, as is the case in most
automotive applications, then it is common practice to design both members to equal life. During
a given lifetime or a vehicle distance, the pinion obtains a higher number of loading cycles than
the gear, depending on the axle ratio. When for both members an equal endurance life in terms
of travelling distance is required, the pinion tooth root stress needs to have a smaller value than
on the gear. This is achieved by modifying the tooth thickness of both members. Then a
maximum life for the entire gearset will be assured. In order to design rear axle gears for equal
life, it is necessary to obtain a certain ratio for the tooth root stress of the pinion to the gear.

The teeth of the pinion generally obtain a positive thickness correction, so as to reduce the pinion
tooth root stress. In order to maintain the same circumferential backlash, the teeth on the gear
will obtain a tooth thickness decrease of the same value, hereby increasing the root stress of the
gear. This implies that the sum of both tooth thickness changes needs to be zero. This can be
done without harnessing the other geometric parameters of the gears that have already been
established. The manufacturing method allows very easily a small change in the position of the
cutter blades on the cutter head, for both the pinion and the gear.

It can be established that for equal life in terms of distance for the pinion and the gear at a
constant amplitude loading, the required ratio for the root stresses can be described as:

1
Orz _ (jk (6.53)
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This equation is valid when the stress level for this Constant Amplitude loading is higher than the
endurance limit for both members. Both members are assumed to be manufactured from the
same material with identical fatigue characteristics. The parameter k is the slope of the SN curve
in the limited life region. Next to the gear ratio, this material value is the only parameter that
determines the amount of required difference between the tooth root stress for the gear and for
the pinion when they are to be designed to equal life.
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If the stress level is lower than the endurance limit and a Haibach-Gatts modification for the SN
curve is assumed here, the equation should be rewritten into:

1
G —
F2 _ (I) 2k-1 (654)
OFy

This shows that the stress ratio of gear to pinion only depends on the gear ratio and the slope
of the SN-curve of the gear material. Depending on the prevailing stress level at a constant
amplitude loading, the value for the exponent may differ. These expressions are only appropriate
for a Constant Amplitude loading of the gears. Depending on the stress level, being lower or
higher than the endurance limit, a different value for the slope of the SN curve is to be used.
For a Variable Amplitude loading, the form of the load spectrum with regard to the endurance
limit will influence the result. Mostly a part of the load spectrum contains loads that are higher
than the endurance limit and a part that is lower.
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Fig. 6.14 Required Stress Ratio for Equal Life acc. to Gleason and Oerlikon Guidelines

Equations for equal life according to Gleason and Oerlikon are represented in fig. 6.14.

In the right part of this figure, the equation according to Oerlikon is drawn. Here the gear ratio
is taken to be the independent variable; the k-factor or the value for the slope of the SN-curve
is the parameter here. The upper three lines are according to equation (6.53) with values for the
slope of the SN curve k = 5, 6, and 7. Note that the value of k = 5 for the region of limited life is
conform to the design guidelines of Oerlikon. The lines according to equation 6.54, the region
of semi infinite life according to the Haibach-Gatts modification are also shown here by the
values of k =9, 11 and 13.

In the left part of figure 6.14. the equation (6.55) for the stress ratio gear to pinion according to
the Gleason Design Guidelines is graphically represented. Here the strength balance factor
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according to Gleason is the independent variable; the gear ratio now is the parameter.
Gleason uses a strength balance factor for designing gears with equal life [2.6-2.8]. This strength
balance factor may obtain three different values for the following design situations:

* equal stress: strength balance factor = 0.0
* equal life: strength balance factor = 0.18
* compromise: strength balance factor = 0.09 - 0.11.

It appears that the strength balance factor for equal life can be approximated by the reciprocal
value of the SN-curve for a 10% failure probability, which is 5.86 according to Gleason [2.8].
The reciprocal value for the strength balance factor that is used for the compromise situation,
is about 10.5. This coincides very well with the slope in the semi infinite life region of the SN
curve, when a Haibach-Gatts modification is assumed. The value for the slope of the HG
modification is 2k-1. Therefore it seems that the compromise is applicable to Variable Amplitude
loading where the load spectrum is situated lower than the endurance limit for the material.

The expression for the stress ratio of gear to pinion for equal life, in terms of the stress balance
factor according to Gleason may be expressed as follows:

o
PF2 _ ( I)str.bai.fact. (6.55)
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It can clearly be seen that for a larger value of the rear axle gear ratio, a larger stress ratio is
required for gear and pinion root root stress, when designing for equal life. A required stress ratio
between gear and pinion may not always be assured in practical situations. Sometimes
manufacturing restraints set limits to the maximum attainable stress ratio, for instance because
of limited point width.

It has been shown that basically the equations for the required stress ratio gear to pinion for
equal life, as used by Oerlikon and Gleason are very much comparable. This does not imply
however that for a given rear axle ratio, the required tooth thickness corrections accoding to
Gleason or Oerlikon will be identical. In fact they may differ very significantly, due to three
reasons.

In the first place, the difference in the assumed slope of the SN curve for the material will lead
to different values for the required stress ratio gear to pinion. Secondly, the change in tooth root
stress resulting from a tooth thickness correction will differ, when calculated according to
different standards. In the third place, the ratio of gear to pinion stress at zero thickness
correction also determines the required amount of thickness correction.

In the Oerlikon calculations, a value of k=5 for the limited life region is used; the Gleason method
indicates a value of k=5.56 to 5.88 for the same region of limited life. This means that for
constant amplitude loading, a difference of 5% for the required stress ratio gear to pinion will
exist between both methods. For the compromise in the Gleason method, a value of 9 to 11 for
the slope between appears to be applied. This would mean that for this situation the required
stress ratio according to Oerlikon will be 20-25% higher than the ratio according to Gleason.

The tooth form factors according to the different calculation standards show a different influence
of tooth thickness on tooth root stress. The bending stress component is directly proportional to
the square of the tooth thickness (Sy)>. The compressive and the shear stress components are
however directly proportional to the tooth thickness, therefore (Sp)".
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All standards have different ways of adding stress components for the Tooth Form Factor.
Therefore they all have different sensitivities to the influence of the thickness correction. The
tooth form factor according to DIN will be directly proportional to (thickness correction). As in
the ANSI/AGMA and Gleason standards also the compressive stress is taken into account, the
influence of tooth thickness correction on stress will be more pronounced here. The influence
of tooth thickness correction, calculated according to Oerlikon will be comparable with the latter.
For the stress ratio of gear to pinion at zero tooth thickness correction, three different situations
may exist. Both stresses may be equal, the pinion stress may be larger than the gear stress or
it may be lower. For these three situations, fig. 6.15 shows the differences in required thickness
correction in order to attain a certain stress-ratio. When at zero tooth thickness correction, the
pinion stress is larger than the gear, a larger correction is required according to ANSI/AGMA and
Gleason to obtain equal life than calculated according to Oerlikon.
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Fig. 6.15 Required Tooth Thickness Correction for Two Situations

When the pinion stress is equal or lower than the gear root stress, a smaller thickness correction
is required according to Gleason. As mostly a higher stress for the pinion teeth than for the gear
teeth occur at zero thickness correction, the required tooth thickness correction according to
Gleason will be much higher than calculated according to Gleason, when equal life is required.
In general one may assume that a set with equal life, calculated according to Gleason will require
a by far larger thickness correction than calculated according to Oerlikon. In other words,
Oerlikon designed sets for equal life may appear to be equal stress when calculated according
to Gleason. This however strongly depends on the situation at zero thickness correction. This
is a major point of interest to be taken into account when designing gears from one system to
another.
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6.7 Resumee

On a theoretical base, the following relationship between gear outer diameter and the maximum
gear output torque for single reduction rear axles has been derived:

d,,=(12 + 14) *szax1’3 (6.13)

This comes down to a loading situation of a vehicle driving uphill on a 15% grade. The safety
factor is about 2.0 to 2.5 for static breakage of case carburised rear axle gear teeth.

This equation is valid for automotive rear axle gears of which the gear outer diameter ranges
from 100 mm to 500 mm.

This equation gives a good correlation with other design directives for gear diameters, such as
Gleason and Oerlikon. The differences between the design guidelines of Gleason and Oerlikon
are very small. Both guidelines indicate a difference in loadability between spiral bevel and hypoid
gears.

The investigation results that have been established in this thesis from test results on actual rear
axles for gear outer diameters from 410 mm to 485 mm, can therefore be extrapolated to gear
outer diameters of down to about 150 mm with a relative low error risk. In other words, for rear
axle gears of vehicles with Gross Vehicle Weight down to 5 tonne. This is of course only valid
under the premisses that the basic design of the driving head casing, gearing material and heat
treatment, differential versions, bearing layout and bearing types are comparable.

For the maximum gear output torque and vehicle GVW/GCW, a linear relation may be assumed.
For trucks each tonne of vehicle weight would require 1 kNm output torque.

T, =T+GCM (6.14)

max

Both typical and very simple relationships (6.13) and (6.14) can be used for preliminary design
of the rear axle gears, when only the vehicle GCW/GVW is known.

It is not concluded that all rear axle gears ARE desinged according to this basic relationship, but
it is important is to know that rear axle gears CAN be dimensioned according to this simple rule.
This would imply that the aspect of tooth breakage for maximum static torque can be considered
to be the most determining element for preliminary design of the gear outerdiameter on case
hardened rear axle gears for vehicle applications.

It has also been shown that for most other gear drives, used in different applications, a similar
relationschip between a representative diameter and maximum output torque can be established.
For single stage gear drives, the centre distance and output torque have mathematically a similar
relationship. For most mechanical power transmitting components, the output torque can be
considered as the dominant value for determining the characteristic dimensions.

In Nature, a corresponding situation may well exist. Here, the weight of land going mammals
appears to be the governing variable for some important life functions and dimensioning
functions such as bone thickness. For rear axle gears of commercial vehicles, the vehicle weight
mostly determines the gear outer diameter.
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In this way, Nature and Technique have a similar way, by keeping a maximum allowable stress
constant over a range of dimensions. Hardly any difference appears to exist, whether the
breakage strength of gears or the compressive strength of animal bones is considered.

Basic gear geometry may be determined by general and simple dimensionless data. With these
data, a preliminary gear set may be designed that is based on only a limited number of data. The
basic gear geometry parameters are teeth number, gear outer diameter, gear facewidth, mean
spiral angle and hypoid offset.

The background for recommendations of the stress ratio gear-to-pinion according to Gleason and
Oerlikon is comparable. The values for the slope of the SN curve differ however to a large extent,
which results in significant differences in the actual tooth thickness for both systems. This is also
influenced by differences in the stress ratio gear-to-pinion for a zero tooth thickness correction.
The sensitivity of the tooth root stress for a change in tooth thickness correction also differs,
although this influence is relatively small.

The required tooth thickness correction, that is caclulated according to both methods, for a given
ratio and equal life, does differ very significantly. Generally, the required thickness correction
calculated according to Oerlikon is appreciably smaller than calculated according to Gleason. A
gearset with tooth thickness correction for equal life according to Oerlikon therefore appears to
be an equal stress gearset in Gleason.

Gears designed according to Oerlikon or Gleason design guidelines will generally give relatively
small differences in their Basic Gear Geometry, such as outer diameter, facewidth and spiral
angle. The choice of these geometry values and parameters such as pressure angle and profile
corrections may even be more dominated by previous experience of the designer or the
availability of cutting tools. The general strength of both geartypes will also differ only to a small
amount.

On the tooth thickness correction, however, relatively large differences may occur, which are the
result of different SN-curve slopes and differences in the tooth root stress sensitivity to thickness
variations.
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7 CONCLUSIONS AND OUTLOOK

7.1 Conclusions

Four Calculation Standards for the tooth root stress of bevel gears have been analysed and
compared. In all standards, virtual helical gears are applied in order to substitute the actual bevel
gears, both for tooth proportions and gear geometry, as well as for calculating the root stress.
In all considered standards, the gear mean face width is taken as the reference point for
calculating the tooth root stress.

Calculations of basic gear geometry and tooth proportions in the reference point, performed by
these four standards, generally lead to very small differences. The individual profile contact ratio
and the face contact ratio also show very small differences in their numerical value. The total
contact ratio and the modified contact ratio however may differ 15 to 30%. This is a result of
differences in the definition for the total and the modified contact ratio.

The basic tooth root Stress Equations according to the considered standards all can and have
been rearranged in one uniform way. A uniform separation between Load, Geometry and Material
Factors has been introduced. By doing this, it has become clear that the basic set-up of all
investigated calculation standards is very much comparable, although the original expressions
do not give that impression. There are however some differences in the description of the
individual factors, but basically they have a similar form.

The largest differences occur for the Tooth Form Factor, the Face Load Distribution Facor and
the Allowable Material Stress. The differences in other Factors amount to a maximum of 40%.
The influence of the Gear Curvature is only used in two standards. The actual curvature of the
gear teeth hardly influences the tooth root stress when the tooth load position is maintained
constant. The gear curvature does however influence the contact pattern sensitivity resulting
from deflections; in this way the gear curvature indirectly influences the tooth root stress.

Differences in calculated tooth root stresses between the standards may even amount to a
factor 2-2.5. These differences are caused by diffences in the individual Load, Geometry and
Material factors and for a part by different designations of the Size Factor. The calculated Safety
Factors lead to appreciably smaller differences.

A specific stress calculation method, it's accompanying allowable material stress values and the
allowable safety factors are uniquely coupled to each other. This means that material stress
values do not only depend on the material, but even more on the stress calculation method.

Generally the differences in general gear dimensions such as gear diameter, modulus, facewidth
and spiral angle will not be large, when calculated by the different standards. The different
requirements of the required safety factor, specific vehicle requirements and product liability laws
may even play a larger role.

The choice of a particular standard will in principle be not of great importance; it should however
always be linked with the acompanying material values and the specified safety factor for the
field experience. There are hardly differences between the calculation standards in terms of
quality. Therefore, gears calculated according to the different standards and for a given vehicle
application, will only have small differences in their basic gear geometry lay-out.
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For the Face Load Distribution Factor according to DIN, a smaller value is proposed for
straddle mounted pinion. A value of 1.30 should be used instead of 1.50 for straddle mounted
pinion and gear and for normal deflection values of pinion to crownwheel. This value of 1.30is
based on the assumption of a load distribution over the facewidth that is more flattened out than
a purely elliptic load distribution function, as is assumed in the calculations according to DIN. The
Face Load Distribution Factor is independent of the torque, when the deflections show a linear
behaviour with the applied torque.

For the calulation of Hypoid Gears, some specific industrial and automotive methods have been
compared. Calculations on geometry and tooth root stress on hypoid gears are performed by
means of virtual bevel gears; this procedure is similar to the stress calculation of bevel gears.
The differences between the several methods are mostly determined by the selection of these
virtual bevel gears, that are determined by the spiral angle and facewidth of the pinion and/or
gear. Depending on the calculation method, the spiral angle and facewidth of the pinion or the
gear should be used.

There are relatively large differences between the Oerlikon-, Gleason- and Winter method of
determining the virtual bevel gears that substitute the actual hypoid gears. As a result, also
relatively large differences arise between the three possibilties in estimating the influence on
hypoid offset on the tooth root stress.

In general, the influence of hypoid offset on tooth root stress as measured by means of
endurance tests and strain gauge measurements from other investigations is far lesser than the
influence calculated according to Oerlikon and Gleason. The method according to Winter gives
the best correlation between calculations and experiments, for the influence of hypoid offset.
Generally a 10% stress decrease is to be expected at a 15% relative offset for a crownwheel
constant spiral angle. The same stress decrease of 10% can already be achieved by a 10%
relative offset when a constant sum of spiral angles is applied. Up to the value of 10% or 15%
relative offset, the effect of stress decrease appears to be linear with increasing offset.

Fatigue Life Tests at Constant Amplitude Loading have been performed on four types of rear
axle gears on a rear axle test rig. Failures were almost all fatigue breakage of the tooth root on
the pinion, because of the relatively high stress level and the reproducable testrig loading
conditions.

Cracks on the root surface were first visible in the middle of the face width. The assumption of
a maximum tooth root stress in the middle of the face width therefore appears to be correct.
During the rest of the fatigue life, the cracks grow not only inward but also towards the toe and
heel side until tooth breakage occurs. The point of crack initiation in the root radius in the normal
tooth section lay between an angle of 45° to 50> This differs from the assumption of the 30-
tangent but comes more close to the Lewis parabola for the critical tooth thickness. An angle of
crack initiation, different than the 30°-tangent has also been observed on helical gears.

The Results of the Constant Amplitude Tests on the rear axle gears could be described by a
two parameter Weibull and a Lognormal failure probability distribution. The results are considered
to be statistically reliable. With these test resullts, it was possible to calculate the gear endurance
life estimate for 10-50% failure probability with an error just less than 10%.

The stress claculations according to DIN have been used with the virtual hypoid gear geometry
calculated according to Winter. The Face Load Distribution Factor was assumed to be1.30.
The endurance limit, the slope for the SN curve and the ratio of static to endurance limit have
been established from the testresults by matching calculated and actual life cycles.
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These values are however different from helical gears in the same material. This is beleived to
be caused by the non linear relation between pinion root stress and torque, which is a result of
the contact pattern, of which both the width and position on the gear tooth flanks is dependent
on the torque.

If a non linear relation between pinion tooth root stress and input torque for bevel and hypoid
gears was assumed, especially the values for the slope of the SN curve came more close to
those of helical gears of the same material. As a result, the ratio of static to endurance limit and
the endurance limit also came close to helical gear related values of the same material.

Therefore, a Load Factor has been proposed in order to accomodate for the size and the
position of the contact pattern. By applying this factor in the calculations, a Non Linearity is
assured between tooth root stress and torque for bevel and hypoid gears.

With this Factor for Contact Pattern Size, the difference between calculated and actual
endurance life was far lesser than 10% at a failure probability of 10% for three of the four tested
axle types. Therefore, it can be concluded that the introduction of a non linear stress-to-torque
relation for bevel and hypoid gears is required in order to use material endurance values for
helical gears of the same material.

Two different types of Driveline Load Spectra for truck applications have been measured.

A specific fraction of the installed vehicle engine power can be considered to determine the load
spectrum. This means that for the examined vehicles with representative truck applications, a
specific part of the installed vehicle engine power largely determines the load spectrum.
Driveline load spectra have been calculated by using a vehicle driveline simulation program.
The difference between measured and calculated loading driveline spectra on representative
applications is small.

Calculated driveline load spectra of rear axle input torque in truck applications have been
generalised in two different types, the “Log-Log” and the “Lin-Log” type. Both spectra assume
a straight line for the torque-to-cycle fraction. The maximum and minimum values for the torque
are the two decisive parameters of these loading spectra.

Mathematical expressions have been derived to determine the equivalent torque for both load
spectra. One is a simple mathematical expression, whereas the other is a recurrent expression.
Next to the form of the load spectrum, the slope of the SN curve determines the equivalent
torque. The equivalent torque for general long distance truck applications, as International
Transport is 20-25% of the maximum torque T-max; for Distribution Transport it is 25-30%.

Variable Amplitude Tests on a limited scale have been performed on one rear axle type with
two different loading spectra. Calculated and actual life cycles also here give the best correlation
between calculation and test results when the non linear stress-to-torque relation is applied.
For both loading spectra, the best correlation between calculated and actual life was realised by
using the Corten-Dolan damage accumulation theory.

As here the non linear stress-to-torque relation also gives a far better correlation between
calculated and actual life than a linear relation, the results of these limited number of Variable
Amplitude Tests confirm the use of a non linear relation between stress and torque.

A reduction in endurance strength in comparison to the value for constant amplitude loading is
still required in order to get calculation and realisation fit. The reduction of the endurance
strength that is determined for Constant Amplitude loading is probably the result of additional
damage phenomena that occur simultaneously under Variable Amplitude loading. This effect may
be defined as “failure interference”, where early occurring surface damage leads to additional
cracks, thereby reducing the fatigue limit for tooth root breakage at Constant Amplitude loading.
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A simple equation for the Gear Outer diameter has been developed, that is based on the
maximum gear output torque. For many rear axle types, there appeared to be a relatively clear
relation between gear outer diameter and maximum output torque.

This maximum torque can easily be referred to the vehicle weight for different applications. For
general truck applications, the factor of 1 kNm/tonne may be used, whereas for small vans, this
value may be 1.35. This relation can be considered to be valid for vehicles from 1 tonne up to
50 tonne GCW and gear outer diameters from 100 to 500 mm.

Gear outer diameters that are based on these values appear to be based on one and the same
maximum allowable bending stress in the tooth root. This stress gives a safety factor of 1.5 to
static overload breakage at the considered vehicle weight on a slope of 15%. It is not said that
all gears are designed according to this criterium, but many bevel and hypoid gears can be
arranged within this relation.

Other power transmitting elements such as couplings and hydraulic motors have similar relations
based on scale effects. For these elements, the maximum output torque is an important
parameter that determines the general dimensions.

In Nature, similar relations exist between body weight of mammals and their most important
biological functions, such as respiratory and cardiovascular functions. The dimensions of the
bones at landgoing mammals appear to be scaled according to one and the same maximum
allowable stress. Based on this comparison of generalised scale laws, Nature and Technology
both appear to apply the priciple of designing to a constant maximum allowable material stress.

Based on the vehicle weight it is possible to determine the basic gear geometry. With this, a
design lay-out may be made by using different dimensionless and general applicable gear
geometry values, that have been derived here.

Pinion and gear for automotive applications are normally designed for equal life by adding a tooth
thickness correction for both pinion and gear. The factors that determine the required thickness
correction are the gear ratio and the slope of the SN-curve. Because of differences in assumed
slope, stress sensitivity to tooth thickness corrections and the ratio gear to pinion stress at zero
thickness correction, large differences may occur between the required tooth thickness
corrections, when calculated according to Gleason or Oerlikon.

7.2 Outlook

Further investigations on the Non Linear behaviour between tooth root stress and output torque
for bevel and hypoid gears will be required. The influence of the contact pattern on the relation
between stress and load needs to be better described as well as the influence of relevant
parameters such as contact pattern dimension as well as it’s position.

The proposed expressions for the Contact Pattern Factor are to be extended and improved,
thereby introducing the influence of deflections, gear geometry and gear curvature.

The effect of the cutter diameter on the sensitivity of the contact pattern should further be
defined. Here, the effect of the ratio cutter diameter to the mean cone distance or to the gear
outer diameter on the change of tooth root stress should be incorporated. In that way, the effect
of the gear curvature, and with this the contact pattern sensitivity, will indirectly be introduced.
The same values for the slope of the SN curve that are used on helical/spur gears should be
used for bevel/hypoid gears. In that situation there will be no difference required between the
slope of the SN curve for material values of different gear types.
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Further investigations on the influence of Hypoid Offset of the pinion on tooth root stress need
to be preformed. Here, specific tests on tooth breakage are required. It is to be assured that, by
selecting the torque and the geometry in terms of module and teethnumber, clearly gear tooth
breakage will occur. Strain gauge measurements can also be used .

The only variable should be the hypoid offset at three different spiral angle strategies. The
influence of other parameters should be minimised as much as possible. Limitations with regard
to manufacturing should also be excluded as much as possible.

Emphasis should be given on the range of 0-10% relative hypoid offset.

A more precise definition of the Face Load Distribution Factor is advised. General values for
the gear deflections and the crowning, for which the expressions are valid, should also be given.

More attention should be paid on determining the actual torque values that are to be expected
in field operations. The representative Load Spectrum of different applications should be
determined. Not only is this valid for automotive apllications; for general industrial applications
as well. Even for the use of different gear calculation standards for spur, helical, herringbone
gears, as well as for bevel and hypoid gears and even for worm gears, this is relevant.

Most of the calculation standards are coming to a level of accuracy that is surprisingly good. Still
almost all factors of influence are incorporated in the stress calcutations. On the other hand there
is the relative large lack of knowledge on the actual loads during operation. If these actual
operating loads are not known or hardly known, it will still be hard to dimension gears to their
limit. Therefore, future work on gear calculation standards should for a large part be focussed
on Establishing Actual Operating Loads.

This means that statistical aspects will require more importance in the near future than the
deterministic aspects. In view of this, stochastic analysis of operating loads and load spectra will
have to be developed with more emphasis than the deterministic description of gear geometry.

In the future, the already ongoing development of Finite Element and Boundary Element Methods
for the calculation of tooth root stresses will be driven further. It needs however to be coupled
with two very important aspects, concerning rear axle gears for automotive applications.

First there is the need of including the housing and bearing stiffness and the gear deflections that
are a result of finite stiffness. Misalignment between both meshing members does have.a
relatively large influence on the face load distribution and thus on the maximum root stress.
Secondly the possibility to incorporate numerical life calculations, based on known driveline load
spectra will further enhance the design method.

When these two aspects can be incorporated in these numerical methods without many
numerical difficulties and without operating problems, than the exact stress definition and thus
designing of these gears will be even better optimised.

One has to bear in mind that every Reliable calculation method on tooth root stress for
automotive rear axle gears in specific and for gear drives in general, always will have to be based
on or strongly accompanied by Practical Experience. In fact, all stress calculations, however
complex they may be, are merely simplifications of reality. Only the degree of complexity may
determine the difference between the actual and the calculated stress value.

Practical experience is therefore always required in order to correlate calculated stress values
or calculated endurance life cycles with actual stress or actual registered life cycles. This
practical experience may be based on either testing methods on testrigs or actual vehicle field
experience. Only by using the results of practical experience on actual vehicle rear axle gears,
it is possible to develop a reliable calculation method.
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9 Symbols, Definitions and Units

Here the symbols of the different calculation standards are summarised. As these standards
mostly use different symbols for one and the same item, the source of the symbol is indicated.

SYMBOL DESCRIPTION UNITS
a Centre distance for spur / helical gear drive mm
a Vertical pinion offset on hypoid gears mm
a Addendum (AGMA, Gleason) mm
b Dedendum (AGMA, Gleason) mm
b Facewidth (DIN, Oerlikon) mm
bes Effective facewidth (DIN) mm
c General coefficient in allometric expressions for animals --
Cabecd Coefficients in cardiovascular and respiratory expressions -~
Cqr Geometry coefficient for root failure -
Cgn Geometry coefficient for surface failure --
Cr Load coefficient for root failure -
Ci Load coefficient for surface failure -
Coe Material coefficient for root failure -
CirH Material coefficient for surface failure --
c Clearance (AGMA, Gleason) mm
Ce Clearance factor (AGMA, Gleason) --
C, Gear addendum factor (AGMA, Gleason) -
d Diameter mm
e General exponent in allometric expressions for animals --
h Bending lever arm of tooth load (general) mm
h Whole depth (AGMA, Gleason) mm
h,, Working depth (AGMA, Gleason) mm
s, Addendum factor (Oerlikon) -

i Gear ratio --
k Depth factor (AGMA, Gleason) -
k Slope of SN curve for bending fatigue at limited life region -
K, Clearance factor (DIN, Oerlikon) --
M Module in middle facewidth in normal section mm
m Exponent in equation for synthetic load spectrum -
me Face contact ratio (AGMA, Gleason) --
my Load sharing factor (AGMA, Gleason) -~
mo Modified contact ratio (AGMA, Gleason) --
me Profile contact ratio (AGMA, Gleason) -
Qw Tooth form factor (Oerlikon) -
I, Cutter head radius mm
Iy Radius to Point of Load Appliocation (AGMA, Gleason) mm
s Tooth thickness at the point of maximum root stress mm
Sat Allowable Bending Stress Number (AGMA, Gleason) N/mm?
S Calculated Bending Stress Number (AGMA, Gleason) N/mm?
St Working Bending Stress Number (AGMA, Gleason) N/mm?
X Profile shift factor (DIN, Oerlikon) -

z Teethnumber -
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SYMBOL

Fe
Fro

YCP—size
YCP—shiﬂ

DESCRIPTION

Facewidth (AGMA, Gleason)

Effective Facewidth (AGMA, Gleason)
Tangential gear load at middle facewidth
Gross Combination Weight

Gross Vehicle Weight

Working depth (Oerlikon)

Dedendum heigth (Oerlikon)

Addendum heigth (Oerlikon)

Whole depth (Oerlikon)

Crowning value in direction of facewidth
Mass

Number of loading cycles

Power

Diametral Pitch at the Tooth Large End
Mean Diametral Pitch

Volumetric delivery

Mean cone distance (DIN, Oerlikon)
Mean Transverse Pitch Radius (AGMA, Gleason)

Mean Transverse Radius to Point of Load Application (AGMA, Gl.)

Safety factor for root failure (Oerlikon)
Safety Factor for surface failure (DIN)
Safety Factor for root failure (DIN)
Torque

General allometric function for animals
Proposed Contact Pattern Factor
Contact Pattern Factor for Size
Contact Pattern Factor for Shift

Pressure angle

Coefficient for shear stress

Spiral angle

Pitch cone angle

Profile contact ratio (DIN, Oerlikon)

Face contact ratio (DIN, Oerlikon)

Total contact ratio (DIN, Oerlikon)

Angle of of tooth load to tooth centreline (general)

Ratio of minimum to maximum torque for load spectrum

Ratio of pinion diameter for hypoid to bevel
Ratio of facewidth to outerdiameter crownwheel
Bending Stress in generalised tooth loading model

Compressive Stress in generalised tooth loading model

Fatigue Limit (Oerlikon)

Tooth Root Bending stress according to DIN
Contact stress according to DIN

Shear Stress in generalised tooth loading model
Tooth thickness correction factor

Cumulative fraction of loading cycles

m/s
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SYMBOL DESCRIPTION UNITS
MKioag Product of Load Factors -
MY geometry Product of Geometry Factors for root stress -
MY paterial Product of Material Factors for root stress -
MZgeometry Product of Geometry Factors for surface stress -
NZ, cterial Product of Material Factors for surface stress -
r Fraction of GCM to crownwheel output torque Nm/10°kg
Calculation Factors according to DIN

Ka Load Application Factor (DIN) -
K, Dynamic Load Factor (DIN) -
Kep Face Load Distribution Factor (DIN) -
Ke.o Adjecent Load Distribution Factor (DIN) -
Yia Tooth Form Factor (DIN) -
Yea Stress Concentration Factor (DIN) -
Y. Load Sharing Factor (DIN) --
A\ Helical Factor (DIN) --
Yy Bevel Gear Factor (DIN) -
Y, Size Factor (DIN) -
Y5 Support Factor (DIN) -
Y rrelit Roughness Factor (DIN) -
Calculation Factors according to AGMA, Gleason

my Load Sharing Ratio -
J Geometry Factor for Bending Strength -
Yx Tooth Form Factor for Bending Strength -
K, Overload Factor -~
K Stress Concentration and Stress Correction Factor -
K; Inertia Factor -
Kn Load Distribution Factor -
K Size Factor -
K, (Internal) Dynamic Factor -
K, Life Factor -
Kg Reliability (Safety) Factor -
Ky Temperature Factor --
K, Cutter Radius Factor -
W, Transmitted Tangential Load N
Calculation Factors according to Oerlikon

B, Nominal Tooth Stress Value N/mm?
B, Effective Tooth Stress Value N/mm?
Co Dynamic Factor -
Cs Shock Factor -
C; Load Distribution Factor -
Cy Overlap Factor -
Ay Gear load per mm facewidth --
dy Pinion diameter -
Mo Radius of virtual helical gears mm
z Teeth number of virtual helical gears mm
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Subscripts and general indices:

()e
(e
()m

()n
Ot
(v
()ef

o)
Ol
()2
()G

()H
OF
()all

()ad
( )eont
()eq
( )max
()min

()

at the outer diameter / outer cone distance
for the virtual helical gears (for Oerlikon)
at the mean diameter / mean cone distance

in the normal section

in the transverse section
for the virtual gears
effective

at the pinion
at the pinion
at the crownwheel
at the crownwheel

tooth surface failure related
tooth root failure related
allowable

general indices for allometric functions
continuous

equivalent

maximum

minimum

knickpoint of endurance fatigue limit
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10 ATTACHMENTS

The attachments are given in the order of importance. The number of the individual attachments
refers to the chapter of the specific subject.

Attachment 2.3 Tooth Root Stress Expressions for different Standards

Derivation of the generalised expressions for tooth root stress.

The basic lay-out for tooth root stress calculations is expressed here, with the three groups of
Load, Geometry and Material Factors given. The different formulations of all calculation
standards will be rewritten into this generalised form.

The basic lay-out for the tooth root stress is:

F
t
c)-1,2 = nF load * b = * rIF geometry < Gallowable * nF material
*mmn
ANSI/AGMA and Gleason
The original expressions here are:
WxK. P, KxK
t:_t_q*_g* S _7+0.061 (GI.1)
K, F J+K,

J= R (Gl.2)

The Tooth Form Factor, inclusive the Stress Concentration, is expressed as:

Py
s tan®
E*(XN‘ N)*Kf (GL.3)
2 3t,
The tangential tooth load is:
2T,
We— (Gl.4)

First Gl.3 is rewritten and inverted into:

h K
A1 8(=M) -tand, ]«
Y, 2t, 2t P,
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Then GI.2 is rewritten and inverted into:
F P

>i<mN>s<K.>|<—F3 K

1
Yk "R, Fg Py

1
J

Now when the original expression Gl.1 is rearranged into Load and Geometry Factors by
implementing the last two expressions, we obtain:

P
St:Ko*i*Km*z*T1 *&*_L[S(_l,_q.)—tanq)N]*ﬁ*mN*K,*B *_F_ *_nl *_1_*KS
K d, F 2t, 2t P, R, F, P, K

e X

v €
Now

A, P, A
de1:d'"1*7 aswellas —-=

This leads to the following equality:

p i AP, T A, T 1 e
] p,  d, A" d, F F

Now the Size Factor Ks is moved to the side of the Material Factors. The root stress then is no
longer equal to the root stress of the original Gleason equation; reason for an addition in the
symbol by adding ” to St. If also the last expression is multiplied by m,, / m,,, we obtain:

s”t = K, *l *K * Fon * l *Kf *m K *l *B— *f-
K, Fxm, Y K, R, F,
In which the general Tooth Form Factor is:
m__ P m h
1o Bm,Za . Dmfe ) tang,)
Y Y. K 2t 2t
The complete expression is:
F m h
S”t:KO*i *K_* M M A [6(— )-tand,] *Kf*mNKi*i *E *f-
K, Fxm__ 2t 2t,, K, R, F,

The original expression for the working stress number is:
S = Sat*KL
Y K+K

TR
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Which now leads to:

The same operations may be performed on the expressions according to ANSI/AGMA, so the
above described procedure also is valid for this standard.

DIN 3991
Here the original expressions can directly be rewritten.

O =0 +K xK\ #Kg +Kp:

F
Of :—L*Yfa*ysa*ye*YB*YK

0
bef*mm,,
(0] o
FE FG

=" %Y, x xY =— =2

Orp Opr Rar "X S
F min f min

(0]
_YFG
Si=—=<S¢min

F

Rewriting these equations to the basic uniform way yields the following expression:

F b
b*n,:t *Yfa*Ysa*Ye*YB*YK*b—

m ef

GF:KA*KV*KFB*KFG*

n

(6]
FE
Of< *Y *Ys

*YR

relT relT

F min

Oerlikon
The four basic equations are:

c)b:Bw*qw*ze (06.1)

B,~=C,+Cp*CxCy*B, (Oe.2)
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B - 103*Md 0e.3
e~dp1*b*fe ( €. )
Op
g.<—D .
=g (Ce.4)

Equations Oe.2 and Oe.3 can be inserted in Oe.1; when the individual parts are also placed in
the same way as has been done with other standards, this leads to:

10°M, Z
_ d, &
Ob_Cs*CD*CT* *_—*qW*CB
d =b r
Py €4
Furthermore:
z
z, = !
' cosd,*COSA,
and
r, = %,
1 2xC08d,*COSAX
Leading to:
E’“i :2*cos[3p1
re1 mpn

The difference between the module in the design point P and the mean facewidth is relatively

small, therefore the mean normal module may be substituted. If this last xepression is inserted

in the expression for the stress and if directly the tangential load in the mean facewidth is
determined, we obtain:

2+10°M, 1 d

d m

* xq *xC.*COSB *——

) D™ P d

my m, P

Ob:Cs*CD*CT*

The unified expression of the Oerlikon equations therefore gives:

F
0,=Cs*Cp*Cyx b *nn;t

dm
*qw*CB *cosBm*_d_

m, p
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Attachment 2.7

A271

Gear Ratio
Teethnumbers z1 / z2

Mean Normal Module m,,,
Outer Transverse Module mg,
Gear Outerdiameter d,

Gear Facewidth b2

Mean Spiral Angle R,

Pressure Angle o,
Addendum Factor H,
Dedendum Factor H;
Profile Shift Factor X,
Tooththickness Corr.Factor
k

c-1

c

Strength Bal. Factor

Cutter Radius - Gleason
Cutter Radius - Oerlikon
Blade Edge Radius

Gear Quality DINJAGMA
Gear Tooth Form - Gleason
Gear Tooth Form - Oerlikon

Failure Probability fp

Maximum Output Torque (acc 6.13)

Output Speed
Vehicle Weight GVW

Output torque for calculation
@ 25% maximum Torque

Material / Heat Treatment

Calculation Example

General Gear Geometry Data.

3.31
13743

6.78

9.58

421

65
30/36/42

225
1.00
1.30
0.45
0
4.00
0.275

-0.058

6"
190
0.50/2.92

8/9
Formate
Spirac

10
32.000
100

30

8.000

Case Carburised Steel / Hardened 60 HR.

6.14
7143

6.56

9.86

424

65
32/38.5/45

22.5
1.00
1.30
0.40

4.00
0.30

-0.009

6"
190
0.5/2.92

8/9
Formate
Spirac

10
32.000
100

30

8.000

mm
mm
mm
mm
degr

%
Nm
rpm
tons

Nm
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A27.2 Calculated Profile, Face Contact and Total Contact Ratio’s.
Ratio 13/ 43 = 3.31
Spiral Agle B, [°] 30 30 | 30 36 36 | 36 42 42 | 42
Calculation Method | ANSI | DIN | Oerl. | ANSI | DIN | Oerl. [ ANSI | DIN | Oerl.
Gleas Gleas Gleas
Mg, €.y [ 119 119119 | 1.09 |1.09 | 1.09 | 0.98 | 0.98 | 0.98
Mg, €. [—] 144 | 121 ] 1.42 1.79 | 153 | 1.80 | 2.21 1.90 | 1.23
my [-] 1.87 | — - 210 | — - 2.42 - -
€. [-] -— 241 | 2.62 - 2.62 | 2.89 -—- 2.88 | 3.22
Ratio 7/ 43 = 6.41
Spiral Agle B, [°] 32 32 32 385 | 385 | 38.5 45 45 45
Calculation Method | ANSI | DIN | Oerl. | ANSI | DIN | Oerl. | ANSI | DIN [ Oerl.
Gleas Gleas Gleas
My, €.y [ 110 | 1.10 | 108 | 099 {100 | 099 | 0.89 | 0.88 | 0.88
Mg, €.vp -] 155 [ 132|155 | 1.97 |168 | 198 | 246 | 211 | 2.49
my, [+] 1.90 - --- 2.21 - - 2.61 - -
€., [l — 241 ] 2.63 --- 2.67 | 2.97 == 2.99 | 3.37

All values are rounded off to two decimals accurate.
The face contact and the total contact ratio according to DIN are calculated for an effective
facewidth of 0.85 x b2. When the full geometric facewidth is taken into account, the difference
between the calculated face contact ratio’s will be negligible.

A273

Results of Stress Calculations.

The individual calculated factors are summarised in both following tables.
The values there are not the same as given in each calculation standard. They are however
conform to fig. 2.4 where the stress equations are rewritten.
Whena value is indicated with **, the value has not been calculated explicitely.
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Ratio 7/43 @ 25 % T-max with B-m2 = 38.5°

Calculation Method
Application Factor

Dynamic Load Factor

Face Load Distribution Factor
Adjecent Load Factor

Tooth Form Factor

Stress Concentr. Factor

Load Sharing Factor

Helical Factor

Cutter Radius Factor

Factor for Point of Load Application

Factor for Effective Facewidth
Mean Facewidth Factor
Unified stress

Product of Geometry Factors
Nominal Stress Pinion

(excl. Load factors)

Product of Loadfactors
Actual Local Stress Pinion
Allowable Stress (Endurance)
Safety Factor

Size Factor

Life Factor

Temperature Factor

Roughness*Support Factor

AGMA DIN
1.00  1.00
1.07  1.03
120  1.50
— 1.5
1.80 2.47
215 1.93
0.87 0.75
— 075
1.06 -
~0.9 -
= 118
105 105
235 3.15
247 330
128 1.62
317 536
430 640
0.83 1.19
0.79 0.99
1.0 1.0
10—

Gleason Oerlikon

1.00
1.05
1.33
1.80
2.15
0.87
1.06

~0.9

ke

105
2.33
246
1.40
345
210
0.61
0.79

1.0

1.0

1.01

1.00

1.01

1.10

Qw

1.0

dek

0.78

*%

105

1.74

365

1.1

405

430

1.00
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Ratio 13/43 @ 25 % T-max with B-m2 = 36°

Calculation Method AGMA DIN Gleason Oerlikon
Application Factor 1.00 1.00 1.00 1.00 ()
Dynamic Load Factor 106 1.01 1.05 1.01 (--)
Face Load Distribution Factor 1.76 150 133 1.10 (--)
Adjecent Load Factor -—-- 1.05 - -—-- (--)
Tooth Form Factor 180 247 180 q, (--)
Stress Concentr. Factor 215 193 215 1.0 (--)
Load Sharing Factor 0.87 075 087 ** (--)
Helical Factor e 0.76 - 0.78 (--)
Cutter Radius Factor 095 - 095 — ()
Factor for Point of Load Application ~09 — ~09 - (--)
Effective Facewidth Factor * 1.18 ** - (--)
Mean Facewidth Factor — — — * ()
Unified stress 419 419 419 419 (N/mm?)
Product of Geometry Factors > 3.15 235 1.74 (--)
Nominal Stress Pinion 986 1325 772 730 (N/mm?)
(excl. Load factors)

Product of Loadfactors 186 156 140 1.11 (-)
Actual Local Stress Pinion 1830 2075 1078 810 (N/mm?)
Allowable Stress (Endurance) 430 690 210 430 (N/mm?)
Safety Factor 023 033 019 0.3 (--)
Size Factor 079 099 079 - (---)
Life Factor 1.0 -—— 1.0 —— (--)
Temperature Factor 10 -— 10 - (--)

Roughness*Support Factor - = 1.01 - ()
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Attachment 2.8.1 Proposal for the Face Load Distribution Factor

The general expression for the total load over the entire gear facewidth is:

Fo = f f(x) dx

For a constant and equally distributed faceload, the faceload distribution function is:
fix) =f,

Introducing this in the integral, leads to:

F .=f b

tot m

When an elliptical distribution of the faceload over the facewidth is assumed, the expression for
the load distribution f(x) may be assumed:
2% .2

)]

fix) =, x[1-( .

When this function is integrated over the entire facewidth, then the total load is:

Fo-f +2
3

tot ~ 'max

This means that the maximum value of the load distribution function for an elliptical load
distribution will be:

f =%*%:mw*%

max

This means that only assuming an elliptical load distribution over the facewidth, the maximum
value of the load distribution is 1.50 times the evenly distributed value. The coincidence of this
value with the multiplication factor of the DIN standard, referring to the Face Load Distribution
factor, may be not that far besides the viewpoint.

The assumption of an elliptical load distribution function may be relatively unfavourable, as
several measurements have shown a distibution that is more flattended out around the middle
of the facewidth. A better assumption for the load distribution function may be:

~ . _ l(_ 3+ 1 2
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With this distribution, the load over half of the facewidth is more than 90% of the maximum load
in the middle of the facewidth.
Now when this function is integrated over the facewidth, the total load is:

F, = * 0.7708 b

tot f max

This means that:

foo
M 0.7708

«f =1.297 * f,~1.30 x f,

the maximum value of the face load now is about 30% higher than when a purely elliptical
distribution for the faceload is assumed.

Therefore the multiplication factor for the Face Load Distribution factor in DIN is more likely to
attain a value of 1.30 than 1.50.



180 10 Attachments

Attachment 5.5 Mathematical Equations for Equivalent Torque.

The general expression for the equivalent torque is:

Teq
T

max

1
oA TNy, e
ML el (5.1)

When the theory according to Corten-Dolan is applied, all torques are involved in the damage
accumulation; this means that the bordervalues for the integration range from 1 to N, which
covers the entire load spectrum.The following is part of [5.5] of Jos Van Heck, in which
expressions have been derived for the equivalent torque for both spectra.

The mathematical expression for the "Log-log”-Spectrum is:

|
logT(N) = logT, - %*IOQN (5.2)

0

This can be rewritten as:

110 T + |'°9,$ +logh]

T(N) = 10 oo
Then
f T(N)k * dN
becomes:
+ 1099
101109 7mad f1o(k S
When
loge
b=k+—*
logN._ (5.3)

is substituted, the expression becomes:

Nb+1
b+1

f10(b*'°9"’)dN = fNada =
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This leads to the expression for the equivalent torque:

N?-1 12
Teq LS 1*_1_];(
T ax N_

The mathematical expression for the "Lin-Log"-Spectrum is:

TN) = T+ [1 -9 iogn]
logN

oo

The expression for the equivalent torque is:

1
AT (T0* - av

When (5.5) is substituted in this last expression, then it becomes:

1 * +D % k «
o [(A+DeIn(N)* « oN

in which
D - C
In(10)
and
__ (-9
logN

When this is partial integrated, this leads to the following recurrent expression:

l, = S - kxDxl,_,

fork=2, 3, 4, 5, .... and so on, where:

« [ +DxIn(n))* dn

1
I = e—
KN

(5.4)

(5.5)
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and

= + * k—l
Sic= (1+ Dein(N) -

The value for I-k when k=1 is:

1 D
[, =1+ D x In -—-D+ =2
1 + (N) N N

Now this recurrent expression is written out for k = 2, 3, 4, 5, and further. After that it can be
rearranged in a general formulation. Then this expression gives the formulation for the ratio of
the equivalent torque to the maximum torque for the load spectrum.

The equivalent torque for the “Lin-Log” spectrum now can be described as:

T, k! i g1 ]
- 9 - 3] TR #(~-DY*{(1+D+InN_)* —T\I-—}]+k!*(—D)k Vel (5.7)

max

o0

where:

~ 1 D ___9
l1—1+D*InNm—K’_—D+_N— where D=-——— (5.8)

In10

o 0
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Attachment 5.7 Results of Variable Amplitude Endurance Tests
Spectrum Output Individual Ti/Tmax Cumulative
Type Torque Fraction Spectrum Fraction
[Nm] [-] [l [-]
LOW 57.195 3.5%10"-4 1.00 3.5%10"-4
46.740 2.0*10"-3 0.82 2.4*10"-3
36.285 1.7*10"-2 0.63 1.9%10"-2
26.445 1.3*10"1 0.46 1.5%10M1
18.450 8.5%10"-1 0.32 1.0*10"0
HIGH 56.630 2.6*10"-4 1.00 2.6*10"-4
52.000 6.6*10"-4 0.92 9.2*10"-4
46.200 3.3*10"-3 0.82 4.2*10"-3
39.950 1.1*107-2 0.71 1.5*10"-2
33.950 2.9%10M1 0.60 4.5%10"-2
27.925 1.2*10"1 0.49 1.7*10M-2
21.640 8.4*10™1 0.38 1.0*10"1
Table 5.2. Loadspectra for Variable Amplitude Tests.
Spectrum Pinion Cycles Failure Mode

LOW 5.50*10° Cracks at the toothroot; several teeth pitting. |
4.05*10° Large cracks on the teeth; severe pitting.
2.60*10° Many cracks at midtooth; two teeth spalling.

1.50*10° + Inspection: small cracks.

HIGH 2.22*10° All teeth cracks; three teeth broken.
1.52*10° Inspection: one crack, one tooth spalling.
0.74*10° Many teeth cracks.

0.64*10° + Inspection: 6 teeth cracks.

Table 5.2. Results of Variable Amplitude Tests
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Attachment 6.2.1 Crownwheel Outer Diameter versus Crownwheel Output Torque
Derivation of crownwheel outerdiameter in function of load, geometry and material.

For this, the basic equations according to DIN 3991 are used, although any other calculation
standard may be used.

For tooth root stress, the general equations are:

OFZOFO*KA*KV*KFB*KFa “Opo*L1Kipgq

F F
OF — M KY xY  xY Yﬁ*YK:———mt— «I1Y

° = geometry
bef*mmn bef*mmn
o o
_ “FE _ “FE
Fp™ * YiS,e,T* YR,E,T * Yx - S +11 Ymaterial
f min fmin

When the basic geometry relations are introduced in the above mentioned equations, the
following expression for the crownwheel outerdiameter on basis of the tooth root stress is
generated:

d92:(2'103)1/3*( Sf )1/3*[ HKload*HYgeometry*zz ]1/3* T21/3

O Y, . ..*E*(1-Exsind,)?+cosp,,,

m

For tooth surface stress, the general equations are:

O =Opio * Ka*Ky*Ki *Kp =0, %y 1K e
:

F i2+1 F i2+1
o, = mt Z,xZ +Z +Z +Z, = mt } 11z
e \j dv1*bef* i2 o E* d B* “ \] dv1*bef* i2 ' geomety

Oy Oy
_ “Hiim _ “Hiim
= # L)+ L\ L Zy= Z toriar

Opp
H min H min

When the basic geometry relations are introduced in the above mentioned equations, the
following expression for the crownwheel outerdiameter on basis of tooth surface stress is
generated:
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S
de2:(2'103)1/3*( H )2/3*[

O itim

Basic gear geometry relations.

HKIoad * (Hzgeometry 2 *y i2 +1 ]1/3 * T21/3

(Hzmaterial)2 *§ *(1 —E*Sin62)2 G

* o V% = dg, - b,"sin(3,)

* b, = §%dg

* drp = dg * [1-€"siN(3,)]

* My =d.,/2z,

* I'nmn = mmt * Cos(ﬁm2)

* Mu = dep * [1-§*siN(B,)] * cos(Byp) * 1/z,
* di =¢*1/i*d,,

* Fot = 2*103*T2 /d.,

For automotive applications, several variables may have the following range of minimum and

maximum numerical values:

Product of Load Factors [1K,4

For Tooth Root Stress:

Product of Geometry Factors I1Y g ety
Product of Material Factors I1Y e
For Tooth Surface Stress:

Product of Geometry Factors I1Zqqmeqy
Product of Material factors [1Z, e

Gear ratio i

Mean Spiral Angle B,
Gear Teethnumber z,
Gear Pitch Angle 5,

Ratio Facewidth/diameter
¢ (for hypoid offset)

Allowable Tooth Root Stress:

- Static Limit

- Safety factor

- Endurance Limit

- Safety factor
Allowable Tooth Surface Stress:

- Static Limit

- Safety factor

- Endurance Limit

- Safety factor

Minimum Mean Maximum
Value Value Value
1.30 1.40 1.50
1.85 2.35 3.00
0.95 1.00 1.05
195 250 315
0.95 1.00 1.05
2 4 6

30 35 38
38 41 45
65 75 85
0.12 0.135 0.15
1.0 1.10 1.20
2000 2100 2200
1.8 2.0 2.2
550 620 690
1.25 1.35 1.50
2200 2350 2500
1.3 1.4 1.5
1300 1350 1400
1.00 1.05 1.10
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When these values are introduced in the two basic equations for the crownwheel outerdiameter,
the following expressions arise.

* For static tooth root stress:

d,,=(11.5+16.0) 2max3
* For continuous tooth root stress:

d,,=(15.5+21.0)«T, "
* For static tooth surface stress:

d,=(7+17.5)+T, . s

* For continuous tooth surface stress:

d,,~(8.5+21.5)+T, . .°

2 cont

By far the largest crownwheel diameters are required for tooth root breakage. This means that
tooth root breakage will mostly determine the required gear dimensions.

For truck applications, the maximum ratio between the maximum and the equivalent output
torque can be expected at typical National Transport Applications. It may amount to:

T
—% =0.27 +0.33

max

The highest value still is lower than the ratio of static to endurance strength for tooth root failure
of case carburised gears, which is mostly almost higher than 0.35. This means that a continuous
load will give a higher safety factor for fatigue than a maximum load gives for static breakage.
If the value for T, = 0.33 X T, ,,,, representing the maximum situation, is inserted now for T, .,
in both express:ons of the crownwheel outer diameter for continuous tooth root and surface
stress diameter to continuous torque, the required outer diameter still remains smaller than for
the maximum torque. This means that the failure type of static loading due to the maximum
torque determines the required crownwheel outer diameter; at least based on this numerical
excercise.
For continuous tooth root stress:

d,,=(10.0+15.0) +T. 3

2 max

For continuous tooth surface stress:

,~(6.0+15.0)T, . ™®

2 max
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